Enhanced Siamese Network with Multi-Scale Feature Fusion for Precise Ischemic Stroke Analysis and Lesion Characterization

Authors

  • Vikas Rana

Keywords:

Ischemic stroke, Multi-Scale Feature Fusion, Enhanced Siamese Network, convolutional neural networks

Abstract

An ischemic stroke causes cell harm and practical hindrance since it is epitomized by a sudden stoppage of blood stream to a piece of the brain. Exact and early recognition of ischemic stroke lesions is vital for successful treatment arranging. Customary strategies face difficulties because of the intricate and heterogeneous nature of stroke lesions. This paper presents an Enhanced Siamese Network (ESN) with Multi-Scale Feature Fusion (MSFF) pointed toward working on the accuracy of ischemic stroke analysis and lesion characterization. The ESN design influences multi-scale feature extraction and fusion to catch unpredictable lesion subtleties across different scales. The recommended model performs discernibly better than present status of-the-craftsmanship procedures concerning lesion identification exactness and characterization measurements, as per exploratory outcomes on publicly accessible datasets.

References

Huang, X., Mao, L., Wang, X., Teng, Z., Shao, M., Gao, J., ... & Shao, Z. (2021). Multi-Sequence MRI Registration of Atherosclerotic Carotid Arteries Based on Cross-Scale Siamese Network. Frontiers in cardiovascular medicine, 8, 785523.

Samak, Z. A. (2023). Automatic Prediction of Functional Outcome of Patients with Ischaemic Stroke (Doctoral dissertation, University of Bristol).

Liang, J., Feng, J., Lin, Z., Wei, J., Luo, X., Wang, Q. M., ... & Ye, Y. (2023). Research on prognostic risk assessment model for acute ischemic stroke based on imaging and multidimensional data. Frontiers in Neurology, 14, 1294723.

Aktar, M. (2023). Automatic Evaluation of Collaterals in Ischemic Stroke (Doctoral dissertation, Concordia University).

Yousif, A. S., Omar, Z., & Sheikh, U. U. (2022). An improved approach for medical image fusion using sparse representation and Siamese convolutional neural network. Biomedical Signal Processing and Control, 72, 103357.

Barman, A., Inam, M. E., Lee, S., Savitz, S., Sheth, S., &Giancardo, L. (2019, April). Determining ischemic stroke from CT-angiography imaging using symmetry-sensitive convolutional networks. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 1873-1877). IEEE.

Soun, J. E., Chow, D. S., Nagamine, M., Takhtawala, R. S., Filippi, C. G., Yu, W., & Chang, P. D. (2021). Artificial intelligence and acute stroke imaging. American Journal of Neuroradiology, 42(1), 2-11.

Boehme, A. K., Esenwa, C., & Elkind, M. S. (2017). Stroke risk factors, genetics, and prevention. Circulation research, 120(3), 472-495.

Lee, E. J., Kim, Y. H., Kim, N., & Kang, D. W. (2017). Deep into the brain: artificial intelligence in stroke imaging. Journal of stroke, 19(3), 277.

Valliani, A. A. A., Ranti, D., & Oermann, E. K. (2019). Deep learning and neurology: a systematic review. Neurology and therapy, 8(2), 351-365.

Murray, N. M., Unberath, M., Hager, G. D., & Hui, F. K. (2020). Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Journal of neurointerventional surgery, 12(2), 156-164.

Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664.

Xanthopoulos, P., Pardalos, P. M., &Trafalis, T. B. (2012). Robust data mining. Springer Science & Business Media.

Castaneda-Vega, S., Katiyar, P., Russo, F., Patzwaldt, K., Schnabel, L., Mathes, S., ... & Poli, S. (2021). Machine learning identifies stroke features between species. Theranostics, 11(6), 3017.

Thornhill, R. E., Lum, C., Jaberi, A., Stefanski, P., Torres, C. H., Momoli, F., ... & Dowlatshahi, D. (2014). Can shape analysis differentiate free-floating internal carotid artery thrombus from atherosclerotic plaque in patients evaluated with CTA for stroke or transient ischemic attack?. Academic radiology, 21(3), 345-354.

Ge Y, Wang Q, Wang L, Wu H, Peng C, Wang J, et al. (2019) Predicting post-stroke pneumonia using deep neural network approaches. Int J Med Inform. 132:103986. doi: 10.1016/j.ijmedinf.2019.103986

Strong K, Mathers C, Bonita R. (2007) Preventing stroke: saving lives around the world. Lancet Neurol.6:182–7. doi: 10.1016/S1474-4422(07)70031-5

Lin, Z., He, Z., Xie, S., Wang, X., Tan, J., Lu, J., et al. (2021). AANet: Adaptive attention network for COVID-19 detection from chest X-ray images. IEEE Transactions on Neural Networks and Learning Systems, 32, 4781–4792. https://doi.org/10.1109/TNNLS.2021.3114747

Wang, H., Sun, Y., Ge, Y., Wu, P. Y., Lin, J., Zhao, J., et al. (2021). A clinical-radiomics nomogram for functional outcome predictions in ischemic stroke. Neurology and Therapy, 10, 819–832. https://doi.org/10.1007/s40120-021-00263-2

Sun, Y., Zhuang, Y., Zhu, J., Song, B., & Wang, H. (2023). Texture analysis of apparent diffusion coefficient maps in predicting the clinical functional outcomes of acute ischemic stroke. Frontiers in Neurology, 11, 1132318. https://doi.org/10.3389/fneur.2023.1132318

Downloads

How to Cite

Vikas Rana. (2025). Enhanced Siamese Network with Multi-Scale Feature Fusion for Precise Ischemic Stroke Analysis and Lesion Characterization. International Journal of Research & Technology, 13(4), 93–108. Retrieved from https://ijrt.org/j/article/view/490

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.