Ant Colony Optimization based MRI Brain Image Despeckling
Keywords:
MRI, ACO, Median Filter, MaskingAbstract
This paper determines the Magnetic resonance image despeckling issues with ACO (Ant Colony Optimization) in wavelet domain.this paper proposes the approach for image noise redduction with comaparion of generalized unsupervised masking used median filter. This method consists three approaches. firstly, it masks the image ,secondly applies ant searching then and finally denoise it. Proposed method is automatically adpt to observing image data in lieu of imposed assumptions of image data. experimental results included for the comparisons of this approach.
References
Latha Parthiban, R. Subramanian, "Speckle Noise Removal Using Contoulets " IEEE, Conference on Information and Automation, p.p . 250-253, 2006.
S.G. change, B. Yu, and M. vetterli, "Adoptive wavelet thresholding for image denoising and compression", IEEE Trans.Image Process., vol.9, no.9, pp. 1532, Sep. 2000
R. F. Wagner, S. W. Smith, J. M. Sandrik and H.Lopez,“Statistics of Speckle in Ultrasound BBXcans,”IEEE Trans. Sonics Ultrasonics 30, 1983, 156–163.
Khaled Z. AbdElmoniem, Yasser M. Kadah and AbouBakr M. Youssef, “Real Time Adaptive Ultrasound Speckle Reduction and Coherence Enhancement”, 0780329772000 IEEE, pp. 172–175.
G. Ramponi, N. Strobel, S. K. Mitra and T. Yu, "Nonlinear unsharp masking methods for image contrast enhancement", Journal of Electronic Imaging, Vol. 5(3), July 1996, pp. 353-366.
J. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlinck, Speckle filtering of synthetic aperture radar images: a review, Remote Sens. Rev. 8 (1994) 313–340.
R. Touzi, A review of speckle filtering in the context of estimation theory, IEEE Trans. Geosci. Remote Sens. 40 (2002) 2392–2404.
George E.B.,Karnan M.,"MRI Brain Image Enhancement Using Filtering Techniques",International Journal of Computer Science & Engineering Technology (IJCSET),2012.
M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization by a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.
A. Colorni, M. Dorigo, V. Maniezzo (1991) Distributed optimization by ant colonies,In Proceedings of ECAL’91 European Conference on Artificial Life, Elsevier Publishing,Amsterdam, The Netherlands, pp 134-142.
M. Dorigo (1992) “Optimization, learning and natural algorithms”, Ph.D. thesis, Politecnico di Milano, Milano
M. Dorigo, V. Maniezzo, A. Colorni (1991) The ant system: an autocatalytic optimizing process, Technical Report TR91-016, Politecnico di Milano.
D.L. Donoho, I. Johnstone, Adapting to unknown smoothness via wavelet shrinkage,J. Am. Statist. Assoc. 90 (1995) 1200–1224.
J. Tian, W. Yu, L. Ma, AntShrink: Ant colony optimization for image shrinkage, Pattern Recogn. Lett. 31 (2010) 1751–1758.
L. Wasserman, All of Statistics, Springer, 2004.
A. Pizurica, R. Pizurica, W. Philips, I. Lemahieu, M. Acheroy, A versatile wavelet domain noise filtration technique for medical imaging, IEEE Trans. Med. Imaging 22 (2003) 323–331.
L. Kaur, S. Gupta, R. Chauhan, Image denoising using wavelet thresholding, in: Proc. Int. Conf. on Computer Vision, Graphics and Image Processing, Ahmadabad, India, 2002, pp. 1–6.
F. Luisier, T. Blu, M. Unser, A new SURE approach to image denoising: interscale orthonormal wavelet thresholding, IEEE Trans. Image Process. 16 (2007) 593–606.
D. Zhou, W. Cheng, Image denoising with an optimal threshold and neighbouring window, Pattern Recogn. Lett. 19 (2008) 1694–1697.
Downloads
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.