Topological Insulators: Electronic Properties and Emerging Applications

Authors

  • Amol M Mandpe

Keywords:

Topological insulator, topological phases, Z₂ invariant, Dirac surface states, spin-momentum locking, quantum anomalous Hall, Majorana zero modes, spintronics, ARPES, transport.

Abstract

Topological insulators (TIs) represent a novel class of quantum materials characterized by an insulating bulk and robust, metallic surface or edge states protected by band topology and time-reversal symmetry. Their electronic properties arise from strong spin–orbit coupling and band inversion, leading to Dirac-like surface states with spin–momentum locking and suppressed backscattering. Prototypical material systems such as Bi₂Se₃, Bi₂Te₃, Sb₂Te₃, and related alloys have enabled extensive experimental exploration of these phenomena through spectroscopic and transport techniques. Beyond fundamental interest, TIs offer promising routes for emerging applications, including low-power spintronic devices, topological superconducting platforms hosting Majorana bound states for quantum computation, and terahertz and photonic devices exploiting their unique optical and plasmonic responses. Despite this potential, key challenges remain, notably residual bulk conductivity, defect control, interface engineering, and large-scale materials integration. Continued advances in materials synthesis, heterostructure design, and device engineering are expected to be crucial for translating topological electronic properties into practical technologies.

References

Hasan, M. Z., & Kane, C. L. (2010). Topological insulators. Reviews of Modern Physics, 82(4), 3045–3067.

Qi, X.-L., & Zhang, S.-C. (2011). Topological insulators and superconductors. Reviews of Modern Physics, 83(4), 1057–1110.

Ando, Y. (2013). Topological insulator materials. Journal of the Physical Society of Japan, 82(10), 102001.

Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194–198.

Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. Physical Review Letters, 98(10), 106803. https://doi.org/10.1103/PhysRevLett.98.106803

König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., & Zhang, S.-C. (2007). Quantum spin Hall insulator state in HgTe quantum wells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047

Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., Osterwalder, J., Patthey, L., Fedorov, A. V., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101–1105. https://doi.org/10.1038/nature08234

Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398–402. https://doi.org/10.1038/nphys1274

Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ with a single Dirac cone on the surface. Nature Physics, 5(6), 438–442. https://doi.org/10.1038/nphys1270

Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X.-L., Zhang, H. J., Lu, D. H., Dai, X., Fang, Z., Zhang, S.-C., Fisher, I. R., Hussain, Z., & Shen, Z.-X. (2009). Experimental realization of a three-dimensional topological insulator, Bi₂Te₃. Science, 325(5937), 178–181. https://doi.org/10.1126/science.1173034

Culcer, D. (2012). Transport in three-dimensional topological insulators: Theory and experiment. Physica E: Low-dimensional Systems and Nanostructures, 44(5), 860–884. https://doi.org/10.1016/j.physe.2011.10.011

He, Q. L., Pan, L., Stern, A. L., Burks, E. C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E. S., Murata, K., Kou, X., Chen, Z., Nie, T., Shao, Q., Fan, Y., Zhang, S.-C., Liu, K., Xia, J., & Wang, K. L. (2017). Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure. Science, 357(6348), 294–299. https://doi.org/10.1126/science.aag2792

Fan, Y., Kou, X., Upadhyaya, P., Shao, Q., Pan, L., Lang, M., Che, X., Tang, J., Montazeri, M., Jiang, W., Nie, T., Schwartz, R. N., Tserkovnyak, Y., & Wang, K. L. (2014). Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nature Materials, 13(7), 699–704.

Tokura, Y., Yasuda, K., & Tsukazaki, A. (2019). Magnetic topological insulators. Nature Reviews Physics, 1(2), 126–143. https://doi.org/10.1038/s42254-018-0011-5

Kong, D., & Cui, Y. (2011). Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nature Chemistry, 3(11), 845–849.

Downloads

How to Cite

Amol M Mandpe. (2025). Topological Insulators: Electronic Properties and Emerging Applications. International Journal of Research & Technology, 13(4), 927–944. Retrieved from https://ijrt.org/j/article/view/896

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.