Experimental Analysis of Magneto-Optical Effects in Nanoelectronic Devices

Authors

  • Rashmi Chakrawarti, Dr. Hiralal Patil

Keywords:

magneto-optical effects, nanoelectronics, Kerr rotation, plasmonics, spintronics

Abstract

This study presents an experimental analysis of magneto-optical (MO) effects in nanoelectronic devices, emphasizing how nanoscale engineering enhances the interaction between magnetic fields and electromagnetic radiation to enable high-performance functionalities. Drawing on existing experimental data, the study explores key MO phenomena such as the Faraday effect, Kerr rotation, magnetic circular dichroism, and plasmon-enhanced optical modulation, highlighting their significance in device optimization and next-generation applications. Experimental findings demonstrate that nanostructured materials—including garnet thin films, ferromagnetic multilayers, magnetoplasmonic architectures, two-dimensional materials, and topological insulators—exhibit amplified MO responses arising from strong spin–orbit coupling, enhanced field confinement, and tailored electronic band structures. These responses contribute to ultrafast switching speeds, high-sensitivity magnetic detection, improved optical isolation, and efficient spin–photon coupling, making MO effects vital for spintronics, on-chip photonics, memory storage, and quantum information technologies. The study also synthesizes insights from device-level experiments, showing how fabrication methods such as lithographic patterning, epitaxial growth, and nanoscale surface engineering influence MO performance and scalability. The analysis underscores the essential role of MO effects in enabling miniaturized, energy-efficient, and high-speed nanoelectronic systems while identifying key challenges that must be addressed to achieve their full technological potential.

References

de Oliveira, R., Yoshida, A. B. B., Rabahi, C. R., Freitas, R. O., Teixeira, V. C., de Matos, C. J., ... & Cadore, A. R. (2024). Ultrathin natural biotite crystals as a dielectric layer for van der Waals heterostructure applications. Nanotechnology, 35(50), 505703.

Dizayee, W. (2017). Measurement and Analysis of Magnetic and Magneto Optical Properties of Thin Films (Doctoral dissertation, University of Sheffield).

Dyakov, S. A., Fradkin, I. M., Gippius, N. A., Klompmaker, L., Spitzer, F., Yalcin, E., ... & Tikhodeev, S. G. (2019). Wide-band enhancement of the transverse magneto-optical Kerr effect in magnetite-based plasmonic crystals. Physical Review B, 100(21), 214411.

Esmaeili, S., Rajil, N., Hazrathosseini, A., Yi, Z., Hemmer, P., & Scully, M. (2024, September). Magneto-Optical Effects in NaGdF4 Nanorods. In Frontiers in Optics (pp. JW5A-70). Optica Publishing Group.

Feng, H. Y. (2017). Magnetoplasmonic nanorings: novel architectures with tunable magneto-optical activity in wide wavelength ranges.

Fu, W., Zhao, X., Wang, K., Chen, Z., Leng, K., Fu, D., ... & Loh, K. P. (2020). An anomalous magneto-optic effect in epitaxial indium selenide layers. Nano Letters, 20(7), 5330-5338.

García-Merino, J. A., Martínez-González, C. L., Trejo-Valdez, M., Martínez-Gutiérrez, H., & Torres-Torres, C. (2018). Nonlinear-optical switching in gold nanoparticles driven by magneto-optical effects exhibited by carbon nanotubes. Sensors and Actuators A: Physical, 279, 248-253.

Guo, H., & Shen, J. (2019). Optical control of magnetism in complex oxides: A new frontier. Science China. Physics, Mechanics & Astronomy, 62(11), 117531.

Gurunarayanan Prakash, S. (2014). Anisotropy Engineering in 3D Magnetoplasmonic Nanoantennas.

He, Y. M., Clark, G., Schaibley, J. R., He, Y., Chen, M. C., Wei, Y. J., ... & Pan, J. W. (2015). Single quantum emitters in monolayer semiconductors. Nature nanotechnology, 10(6), 497-502.

Kocsis, V. (2016). Magneto-Optical and Magnetoelectric Effects in Multiferroic Materials (Doctoral dissertation, Budapest University of Technology and Economics (Hungary)).

Kolmychek, I. A., Romashkina, A. M., Maydykovskiy, A. I., Gusev, S. A., Gusev, N. S., Sapozhnikov, M. V., ... & Murzina, T. Y. V. (2021). Resonant Enhancement of the Transverse Magneto-Optical Effect in Opal/Cobalt/Silver Plasmonic Heterostructures. JETP Letters, 114(8), 456-462.

Kosobukin, V. A., & Krichevtsov, B. B. (2010). Local field effects in magneto-optics of two-dimensional arrays of ferromagnetic nanoparticles. Physics of the Solid State, 52, 813-820.

Lei, C., Chen, L., Tang, Z., Li, D., Cheng, Z., Tang, S., & Du, Y. (2016). Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays. Optics Letters, 41(4), 729-732.

Lei, C., Wang, S., Tang, Z., Li, D., Chen, L., Tang, S., & Du, Y. (2017). Extraordinary optical transmission and enhanced magneto-optical effects induced by hybrid waveguide-surface plasmon polariton mode in bilayer metallic grating. Journal of Physics D: Applied Physics, 50(12), 125002.

Downloads

How to Cite

Rashmi Chakrawarti, Dr. Hiralal Patil. (2025). Experimental Analysis of Magneto-Optical Effects in Nanoelectronic Devices. International Journal of Research & Technology, 13(2), 349–360. Retrieved from https://ijrt.org/j/article/view/594

Issue

Section

Original Research Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.