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Abstract—This paper presents an insight into the usage of
Message Passing Interface for clustering of big data system.
We processed parallel mining of big data frequent item set
in transactional database of big data through MPI (Message
Passing Interface) and MPI has been used here in distributed
environment. Basically two algorithms used for mining in Dis-
tributed computing such as FP Growth and Apriori. FP Growth
Algorithm has been parallelised through the use of MPI. FP
Growth Algorithm is used for extracting significant data out
of bulk of data. i.e. Data Mining. We have applied FP growth
algorithm sequential as well as parallel and see the significant
changes in time taken to mine the transaction. In parallel way,
we used MPI to perform message communication. A significant
feature is the time elapsed for processing. It draws out a
comparison between time spent in parallel computing and single
processor computing. On other hand, parallel algorithm has also
been checked on performance basis.

Keywords— Big Data, Data Mining, Transactional database, FP-
Growth, MPI, Parallelization.

I. INTRODUCTION

In this electronic age, increasing number of organizations are
facing the problem of explosion of data and the size of the
databases used in today’s enterprises has been growing at
exponential rates. Data is generated through many sources like
business processes, transactions, social networking sites, web
servers, etc. and remains in structured as well as unstructured
form [1]. Today’s business applications are having enter-
prise features like large scale, data-intensive, web-oriented
and accessed from diverse devices including mobile devices.
Processing or analyzing the huge amount of data or extracting
meaningful information is a challenging task [1][2].

A. Big Data vs Traditional Data

Big data as “datasets whose size is beyond the ability of
typical database software tools to capture, store, manage, and
analyze”. This definition is subjective and does not define big
data in terms of any particular metric. However, it incorporates
an evolutionary aspect in the definition (over time or across
sectors) of what a dataset must be to be considered as big data
[3]. Big data is where the data volume, acquisition velocity,
or data representation limits the ability to perform effective
analysis using traditional relational approaches or requires the
use of significant horizontal scaling for efficient processing
[4]]. In particular, big data can be further categorized into big
data science and big data frameworks. Big data science is
“the study of techniques covering the acquisition, conditioning,
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TABLE I
COMPARISON BETWEEN BIG DATA AND TRADITIONAL DATA

[ Comparision [ Traditional Data | Big Data |
Volume GB TB & PB
Generated Rate per hour, day more raid
Structure Structured Semi-structured or Un-structured
Data Source Centralized Fully Distributed
Data Integration | Easy Difficult
Data Store RDBMS HDEFS, NoSQL
Access Interactive Batch or Real-Time

and evaluation of big data”, whereas big data frameworks are
“software libraries along with their associated algorithms that
enable distributed processing and analysis of big data problems
across clusters of computer units”. An instantiation of one or
more big data frameworks is known as big data infrastructure
(3.

Concurrently, there has been much discussion in various
industries and academia about what big data actually means.
However, reaching a consensus about the definition of big
data is difficult, if not impossible. A logical choice might
be to embrace all the alternative definitions, each of which
focuses on a specific aspect of big data. The aforementioned
definitions for big data provide a set of tools to compare
the emerging big data with traditional data analytics. This
comparison is summarized in under this framework,
first, the sheer volume of datasets is a critical factor for
discriminating between big data and traditional data [6].

II. B1G DATA TECHNOLOGY AND TOOLS

In this section, technology and tools that have big impact
on big data service are pointed out. First the explanation
of hardware technologies followed by software technologies.
Later in this section, brief discussion is presented on some
tools that are made for different purposes in big data service.

A. Hardware Technology

Conventional storage technology DRAM to store persistent
data faces problem for long-term use because disks have
moving parts that are vulnerable to malfunction in long run.
DRAM chips need constant power supply irrespective of
its usage. So, it is not an energy-efficient technology. Non-
volatile memory technology shows a promising solution in
future memory designs [7][8]. There are thinkings on use
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of NVM even at instruction level so that operating system
can work fast. It is a wish to see NVM technology brings
revolution to both data store and retrieval. Other than memory,
technology looks for improving processing power to address
the need for fast data processing. Significant solution towards
that includes Data-Center-on-Chip (DOC) [9]. It proposes
four usage models that can be used to consolidate appli-
cations that are homogeneous and cooperating and manage
synchrony on shared resources and at the same time speed
up computation providing cache hierarchies. Tang et al. [10]
proposes a hardware configuration that speeds execution of
Java virtual machine (JVM) by speeding up algorithms like
garbage collection [10]. Same idea can be adopted for big
data processing applying hardware technology to speed up data
processing at bottlenecks usually found at data being shared
by many.

Visualization technology though came with mainframe tech-
nology and gone low for availability of inexpensive desk
top computing has come to forefront again for processing
big data service on cloud environment [11]. Technologies
are coming up for both CPU, memory and I/O visualization.
For big data analytics, even code visualization (like JVM) is
being intended. This technology helps in run-time visualization
following dynamically typed scripting languages or the use of
just-in-time (JIT) techniques [12].

B. Software Technology

This section take up developments in software technology
taking place for big data services. First, it is pointed out the re-
quirements in software technology in development of big data
systems [13]. The requirements include storage management
and data processing techniques particularly towards business
intelligence applications.

Big data storage not only faces challenge in hardware tech-
nology but also the challenge with its store management [14].
As discussed through CAP theorem [15]], indicates, assurance
of high availability as well as consistency of data in distributed
systems is always an ideal situation. Finally, one has to
relax constraints in maintaining consistency. The nature of
applications makes decisive impact assurance of consistency.
Some applications need eventual consistency. For example,
Amazon uses Dynamo [16] for its shopping cart. Facebook
uses Cassandra [[17] for storing its varieties of postings. Issues
such as file systems, data structures and indexing are being
actively studied for making big data systems meet growing
user needs [18].

Data processing requirements can be better understood by
following the way data are being generated in big data environ-
ment. Other than being bulk and heterogeneous, big data char-
acterizes with its offline and online processing [19]]. Streaming
(online) data processing and that at back-end need different
approaches as latency for both are diametrically different.
Again taking application characteristics into consideration, we
find task parallelism is required by scientific applications and
data-parallelism by web applications. However, all data-centric
applications need to be fault-resilient, scalable as well as
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elastic in resource utilization. MapReduce [20] technique is
well known for data parallel model used for batch processing.
Google’s MapReduce [20] is the first successful use of big data
processing. It provides scalable and fault-tolerant file system in
development of distributed applications. The paradigm has two
phases, viz. Map and Reduce. On input, programmer-defined
Map function is applied on each pair of (Key, Value): list to
produce list of (Key, Value, list) list as intermediate list. And in
Reduce phase, another programmer-defined function is applied
to each element of the intermediate list.

The paradigm supports run-time fault-tolerance by re-
executing failed data processing [20]. Open-source version
Hadoop [21] supporting MapReduce [20] paradigm is ex-
pected to be used for half of the world data in 2015 [55].
There are different versions of MapReduce technique to cater
to different types of applications, e.g. for online aggregation
and continuous queries, a technique is proposed accordingly.
There are many extension to MapReduce, proposed in to
support asynchronous algorithms. Some other extensions of
MapReduce [20] to support different types of applications
and assuring optimized performance by introducing relaxed
synchronization semantics are also proposed.

III. LITERATURE REVIEW
A. Parallel Mining

Typically, the process of mining for Frequent Patterns is
applied in large databases. For this reason, parallel versions of
several algorithms have been adapted, as the sequential ver-
sions tend to be very time consuming [22]. Taking advantage
of the computation power parallel machines provide, reduces
significantly the time required to scan the dataset and gener-
ated Frequent Patterns. Most of the existing parallel algorithms
are based on sequential algorithms as plenty of state-of-art
algorithms exist out there. Sequential versions of algorithms
used for the process of frequent item set mining appear to
work sufficiently well for uni-processor architectures. As the
bulk of the process emerges from the pattern generation stage,
the parallel versions attempt to apply the computational power
of parallel systems for distributing workload among multiple
processors [23][22].

This section explains parallel versions of three Apriori-
based algorithms namely Count Distribution, Data Distribu-
tion, Candidate Distribution, a parallel version of the FP-
growth algorithm. For presentation purposes, assume P; to be
a processor with id.

B. The Count Distribution Algorithm

Count Distribution [24]], is a parallel Apriori-based algo-
rithm used to mine for frequent patterns. Each processor P;
computes its local candidate item set, along with their support
count, by performing a single pass over its local data partition
at that time. Information is maintained in a hash-table which
is identical for each processor. This procedure is accomplished
by running a sequential Apriori on each processor. All local
counts are then accumulated and summed together to form a
global support count using a global reduction function [25].
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This is illustrated in [Figure T} Global reduction consists of two
other operations. One of the operations is referred to as Reduce
Scatter which is responsible for obtaining local support count
communication from a processor Pi, and the other operation
is named All Gather operation which is responsible for global
support count communication. Count Distribution seems to

Proc 0 Proc 2

Proc 1 Proc 3

Local Data Local Data Local Data Local Data
N/P N/P N/P N/P
Count Count Count Count
Candidate Candidate Candidate Candidate
Hash-Table Hash-Table Hash-Table Hash-Table
{1,4} 2 {1,4} 7 {1,4} 0 {1,4} 4
{1,2} 4 {1,2} 3 {1,2} 2 {1,2} 3
24 | 5 2.4 5 2.4} 6 {2,4} 2
M M M M
{34 | 6 {3.4} 3 {3.4} 8 {3.4} 6
ARSI T
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M: Size of Candidate Set

N: Number of Transactions P: Number of Processors

Fig. 1. The Count Distribution Algorithm

scale linearly to the number of records of the dataset as all
computations to find support counts can be done locally at
each processor having minor communication only at the end
for accumulating the counts. However, in case the hash-table
structure cannot fit into the main memory of each processor,
it must be partitioned and support counts are computed by
performing multiple scans of the dataset.

C. The Data Distribution Algorithm

The Count Distribution [24] algorithm is attractive in the
sense that no data movement is performed. All the counts are
computed locally to each processor thus every processor can
operate asynchronously on its own data. However, this limits
the ability of taking advantage of non-local memory parallel
machines provide. The Data Distribution algorithm [26] solves
this problem by allowing each processor to compute the
support counts of its locally stored subset of the candidate
item sets for all the transactions in the database. In order
for this to become feasible, the All-to-All broadcast is used,
where each processor must scan its own partition of the data
as well as other partitioned data located at remote processors.
This results in every processor having to broadcast their data
to all other participating processors as well as receive data
from them. Although this will solve the problem that Count
Distribution carries with it, there are still negative effects as far
as the burden placed in communication operations as there is a
high communication overhead created due to data movement.
Furthermore, such a communication scheme as this one causes
the processors to become idle while waiting for data to be
broadcasted resulting in wasting time that could have been
manipulated for useful processing. The algorithm is illustrated

in Figure 2
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Fig. 2. The Data Distribution Algorithm

D. The Candidate Distribution Algorithm

Both Count [24] and Data distribution [26]] algorithms carry
the limitation that there is some synchronization involved.
Although in Count Distribution, each processor can compute
its own candidates asynchronously, some synchronization is
required when global counts are about to be summed. In
case the workload is not perfectly balanced some processors
may have to remain idle until others are finished. Similarly,
in Data Distribution, synchronization is needed when data is
broadcasted around the processors. Furthermore, since any
database transaction could support any candidate item set,
each transaction must be compared against the entire candidate
set. For this reason, Count Distribution needs to duplicate
the dataset in every processor and Data Distribution needs to
broadcast all of the transactions.

Candidate Distribution [27] combines the ideas used in
both previous algorithms in order to overcome the problems
associated with idle time, communication, and synchronization
issues. This is achieved by duplicating the data on every
processor’s local memory as well as partitioning the candidate
set across processors. In this way every processor can proceed
independently, using its part of candidates on its local data.
There is no need to exchange data or counts using this
algorithm. The only communication required is when pruning
a local candidate set during the phase of pruning in candidate
generation. However, there is no need for synchronization at
this stage thus no processor has to remain idle until pruning
updates from other processors arrive.

E. Parallel Mining of Association Rules from Text Databases
on a Cluster of Workstations

This section describes a parallel implementation of the serial
Apriori algorithm described. As already mentioned the major
bottleneck of Apriori-based algorithms arises from the fact that
a large number of candidates may need to be generated [28]].
In addition, multiple scanning of the database has a negative
impact upon execution time. The Apriori algorithm adapts
a different perspective, from Apriori-based ideas, by mining
for frequent patterns avoiding the costly candidate generation
phase. Also the use of a tree structure to store the transactions
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circumvents the need of multiple scans. Furthermore, taking
advantage of the aggregate memory and processing power of
parallel machines, Apriori appears to achieve higher speedups
compared to its sequential version as well as scalable perfor-
mance, especially for very large datasets [29].

The serial version of the algorithm has been described in
detail in next section; therefore, attention will be given only to
parallel issues concerning this idea. The main idea is to make
one main tree on master node and slave do processing with
database rather than have multiple Apriori-Trees, one for each
processor.

IV. CONCLUSION AND FUTURE SCOPE

In this review, the real time analytical and comprehensive
analysis of big data parallelization techniques and methods
are presented. Basic tools to process and execute of big
data are summarized and its unique characterizations are
investigated based on the analytical methods and experiments.
The advanced and future approaches of big data are reviewed
as well. The big data modules, properties and applications
in business, research and industries presents broad future
scope of this area. There are several further future analysis of
big data parallelization when it is integrated with other core
implementation of programming and algorithms.

V. SOLUTION APPROACH

Basically there are estimated two approaches for the mining
of data:

A. FP-Growth Algorithm

Let i = fay;ao;:::;a, be a set of items, and a transaction
database DB = Ti;T5; 5Ty, whereT;(is]1 n]) is a
transaction which contains a set of items in /. The supportl
(or occurrence frequency) of a pattern A, which is a set of
items, is the number of transactions containing in DB. A, is
a frequent pattern if A’s support is no less than a predefined
minimum Support threshold. Given a transaction database DB
and a minimum support threshold, the problem of finding the
complete set of frequent patterns is called the frequent pattern
mining Problem. The main steps of FP-Growth method are as
follows:

1) Construct conditional pattern base for each node in the
FP-Tree.

2) Construct conditional FP-Tree from each conditional
pattern-base.

3) Recursively mine conditional FP-Trees and grow fre-
quent patterns obtained so far.

4) If the conditional FP-Tree contains a single path, simply
enumerate all the patterns.

Features of FP-growth Algorithm Feature extraction adopts
a FP-Tree structure and FP-growth Mining method based
on FP-Tree without candidate generation, which optimized
from FP-growth algorithm. FP-growth is a basic algorithm of
generating frequent patterns. FP-growth employs an iterative
approach known as a level-wise search, where k — item
sets are used to explore (k + 1)-item sets. FP-growth is an
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influential algorithm for mining frequent item sets for Boolean
association rules. In some application cases the FP-growth
behave not as good as expect (i.e., need to repeatedly scan the
item sets, inefficient, consuming abundant resource of CPU).
FP-growth is optimized algorithm from FP-growth.

B. Result Analysis

Consideration of database (size=5577) Here, a database
of size 5577 are taken transaction and perform mining of item
serial as well as parallel. The corresponding result is shown in
table. It is analyzed through graph. Table between execution
of time and threshold in serial and parallel algorithm For
big data item-sets, the parallel execution (using MPI) takes less
time as compared to the serial execution (without MPI). For
threshold value of 0.10, serial execution takes 0.104 seconds
whereas parallel execution takes 0.048 seconds which is the
advantage of parallel execution.

TABLE II
EXECUTION TIME IN SERIAL AND PARALLEL ALGORITHM.

Big Data Serial Execution Parallel Execution
Item-Set (Seconds) (Seconds)
Threshold— 0.10 | 0.104 0.048
Threshold— 0.15 | 0.060 0.040
Threshold— 0.20 | 0.044 0.038

1) Graph Corresponding to Table: The figure 3| represents
a graph of execution time for serial and parallel execution.
For lower threshold values of big data item-sets (for example
0.10), the parallel execution time is very less as compared
to serial execution. The blue bars in the graph represents
the serial execution (FP-Growth algorithm without message
passing interface) and orange bars in the graph represents the
parallel execution (FP-Growth algorithm with using message
passing interface). For higher threshold values (for example,
greater than 0.20), the parallel execution time is some less as
compared to serial execution.
The figure [ represents the graph of execution time for

Execution Time for Sample Big Data
Serial & Parallel Execution

0.14
0.12
0.1

0.08

0.06

0.04

= | H =
0

Threshold - 0.10 Threshold - 0.15 Threshold - 0.20

. Serial (FP-Growth without MPI) . Parallel (FP-Growth with MPI)

Fig. 3. Graph of Execution Time for Serial and Parallel Execution

MIHP (Multipass with Inverted Hashing and Pruning), PMIHP
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(Parallel Multipass with Inverted Hashing and Pruning) and
the proposed method APRIORI with MPI (message passing
interface). The graph represents that the proposed method has
less execution time as compared to previous methods MIHP
(Multipass with Inverted Hashing and Pruning), PMIHP (Par-
allel Multipass with Inverted Hashing and Pruning). The MPI
(message passing interface) uses task parallelization where as
MIHP and PMIHP use data parallelization techniques. The
task parallelization is more efficient than data parallelization
in context of time complexity, so the proposed method presents
better performance as compared to previous work.

Execution Time for Sample Big Data using
MIHP, PMIHP & FP-Growth with MPI

0.09

0.08
0.07

0.06

0.05

0.04
0.03
0.02
0.01
0

Threshold - 0.10 Threshold - 0.15 Threshold - 0.20

o

MIHP [l pMIHP [l FP-Growth with MPI

Fig. 4. Graph of Execution Time for MIHP, PMIHP and FP-Growth with
MPI

C. Scalability Evaluation:

Serial run-time is indicated using 7 Parallel run-time using
Tp.
1) Speed up:: Speed-up, S, is defined as the ratio of the
serial run-time of the best sequential algorithm for solving a
problem to the time taken by the parallel algorithm to solve
the same problem on p processors:

2) Efficiency:: Efficiency E, is “a measure of the fraction
of time for which a processor usefully employed”; it is defined
as “the ratio of speed-up to the number of processors”.

S

E=—

P
Here total number of processor core P = 3 ( 1 single core +
2 single dual core).
Result corresponding to Speed up and Efficiency For the
given big data item-sets, the speedup is calculated for threshold
value of 0.10, 0.15 and 0.20.

For lower threshold values, the proposed method presents high

efficiency, however, for higher threshold values, it presents
lower efficiency.

WWwWw.ijrt.org

International Journal of Research & Technology_February_ Volume 07 issue 01

TABLE III
SPEED-UP AND EFFICIENCY

Big Data Threshold=0.10 Threshold=0.15 Threshold=0.20
Item-Set

Speed-Up 2.16 1.5 1.15

Efficiency 0.72 0.50 0.38

VI. CONCLUSION AND FUTURE WORK

Throughout the last decade, a lot of researchers have imple-
mented and compared several algorithms that try to solve the
frequent item set mining problem in web content mining as
efficiently as possible. Moreover, we analyzed and experienced
that different implementations of the same algorithms can
still result in significantly different performance outcomes.
As a consequence, several claims that were presented in
some articles were later contradicted in other articles. In
this paper, we performed web contents mining frequent item
through MPI in transactional database for making difference
between sequential and parallel algorithm, we noted the time
of making APRIORI Tree for both algorithms on different
threshold. After compare the result of different metric with idle
parallel system metric, we conclude that our algorithm works
good in parallel environment. MPI is used here for message
communication between master and slave node as we made
a paring here to create a virtual network. This method and
technique helps MPI to communicate in parallel environment.

The future extension to this project may include some
updates such as using optimization to make the database
efficient. The database here comprised of numeric values.
Instead, alphabetical letters could also be taken and then the
scanning would be word by word. Also, most significantly, the
processing time can be further compressed.
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