

Experiential Learning for Children with Visual Impairment

¹Sanjeev Kumar ²Dr. Sandeep Berwal, ³Dr Jasmer Singh

Research Scholar, Department of Education, CRSU Jind

² Research supervisor, Professor, Department of Education, CRSU Jind

³ Co-supervisor, Assistant Professor, NIEPVD, Dehradun

Abstract

This study explores the significance of experiential learning as an inclusive pedagogical approach for children with visual impairment, emphasizing its role in enhancing understanding, engagement, and independence. Rooted in the theories of Dewey and Kolb, experiential learning enables students to acquire knowledge through direct interaction, reflection, and sensory participation. For visually impaired learners, it transforms traditional teaching into multisensory experiences involving tactile, auditory, and kinesthetic activities that make abstract concepts more concrete. The research highlights how such methods foster cognitive growth, social skills, and self-confidence while bridging educational gaps caused by visual limitations. It also examines challenges related to accessibility, teacher preparedness, and resource constraints, suggesting innovative strategies for effective implementation. The study concludes that experiential learning not only enriches academic outcomes but also promotes holistic inclusion, empowering children with visual impairment to learn by doing and participate fully in educational and social environments.

Keywords: Experiential Learning, Visual Impairment, Inclusive Education, Tactile Learning, Multisensory Pedagogy.

Introduction

Experiential learning for children with visual impairment represents a transformative educational approach that bridges the gap between abstract knowledge and lived experience, enabling learners to engage directly with their environment through sensory, tactile, auditory, and kinesthetic means. In traditional educational frameworks, visual input plays a dominant role in learning processes, often marginalizing students who rely on alternative sensory channels. Experiential learning, rooted in the theories of John Dewey, David Kolb, and Jean Piaget, emphasizes learning through doing—where reflection on experience leads to conceptual understanding and skill development. For children with visual impairment, this approach offers unique opportunities to explore, manipulate, and internalize concepts through touch, sound, movement, and interaction with real objects. By engaging in hands-on activities such as tactile experiments, mobility-based tasks, and multi-sensory games, visually impaired learners can construct meaningful mental representations of the world around them. Moreover, experiential learning fosters independence, confidence, and critical thinking, enhancing not only academic achievement but also life skills essential for adaptive functioning. In inclusive education settings, experiential methods promote equitable participation and social integration, allowing visually impaired students to collaborate meaningfully with peers. This pedagogical shift aligns with global and national education policies such as the United Nations Convention on the Rights of Persons with Disabilities

(UNCRPD) and India's National Education Policy (NEP 2020), both advocating inclusive, learner-centered education. Despite its promise, implementation remains constrained by limited resources, teacher training gaps, and inadequate tactile learning materials. Addressing these challenges requires innovative instructional design, assistive technologies, and teacher empowerment to create environments where experience becomes the foundation of understanding. Therefore, experiential learning stands as both a philosophy and a practical framework for reimagining education for children with visual impairment—one that recognizes ability over disability and experience over observation, ensuring that every learner can access, engage with, and enjoy the process of learning through active participation and sensory discovery.

Concept of Experiential Learning

Experiential learning is an educational approach that emphasizes learning through direct experience, reflection, and application, rather than passive absorption of theoretical knowledge. Rooted in the work of educational theorists such as John Dewey, Kurt Lewin, and David Kolb, it is based on the principle that knowledge is constructed through the transformation of experience. According to Kolb's Experiential Learning Cycle, the process involves four stages: concrete experience, reflective observation, abstract conceptualization, and active experimentation. Learners engage in a concrete experience, reflect on it critically, derive theoretical understanding, and then apply that understanding in new contexts. This cyclical process fosters deeper comprehension and skill development.

Experiential learning promotes critical thinking, problem-solving, creativity, and self-awareness by encouraging learners to connect theory with practice. It is widely applied in various educational settings, including fieldwork, simulations, internships, service learning, and laboratory exercises. The approach not only enhances academic understanding but also develops interpersonal and professional competencies essential for real-world challenges. Overall, experiential learning transforms learners from passive recipients into active participants, making education more meaningful, engaging, and impactful. Through experience-based practice, reflection, and adaptation, learners gain holistic insights and develop the capacity for lifelong learning and personal growth.

Recommended Strategies of Experiential Learning for Children with Visual Impairment

Effective implementation of experiential learning for children with visual impairment requires thoughtfully designed strategies that integrate multisensory engagement, collaboration, and contextual exploration. These methods must bridge the gap between abstract academic content and tangible sensory experience, promoting independent thinking, confidence, and social inclusion. The following approaches—grounded in experiential learning theory—represent practical and inclusive strategies for enhancing the educational experience of visually impaired learners.

1. Storytelling as an Experiential Tool

Storytelling is one of the most powerful pedagogical methods for children with visual impairment because it stimulates imagination, comprehension, and emotional engagement

through auditory channels. By listening to stories, learners can visualize characters, actions, and settings through sound, rhythm, and expression. Teachers can enhance this method by incorporating tactile props, recorded voices, or dramatized narration. Storytelling also aids in the development of memory, sequencing, and language skills, encouraging students to relate experiences to real-life contexts. When stories are co-created or re-enacted, they transform from passive listening into active participation, aligning with Kolb's "concrete experience" stage of learning.

2. Cooperative Learning

Cooperative learning emphasizes collaboration among peers in small groups to achieve shared academic goals. For visually impaired learners, this strategy not only supports experiential engagement but also fosters social inclusion and mutual respect. Group activities—such as joint problem-solving, project-based assignments, or peer teaching—allow visually impaired students to contribute meaningfully based on their strengths. This approach nurtures interpersonal communication, empathy, and collective responsibility. Teachers play a crucial role as facilitators, ensuring that tasks are structured equitably and that tactile or auditory materials are accessible to all members. Cooperative learning also develops leadership and negotiation skills, essential for social integration beyond the classroom.

3. Activity-Based Learning

Activity-based learning (ABL) places learners at the center of the educational process by engaging them in structured, hands-on tasks that relate directly to the curriculum. For visually impaired children, this approach transforms learning into an interactive, sensory-rich process. Activities such as tactile science experiments, measuring objects, exploring textures, or using Braille maps promote experiential understanding through touch and movement. Teachers can design subject-specific activities—like clay modeling in geography to understand landforms or sound-based experiments in physics—to enhance concept retention. ABL ensures that knowledge is not memorized but *experienced*, making learning outcomes more meaningful and long-lasting.

4. Small Group Learning

Small group learning offers a safe and supportive environment where visually impaired students can engage more confidently in discussions and practical tasks. In smaller groups, individualized attention becomes feasible, allowing teachers to adapt instructions and materials to each learner's sensory preferences. This structure encourages peer mentorship and feedback, promoting both academic understanding and emotional growth. Small groups also allow for differentiated pacing—visually impaired learners can take the time they need to explore materials, ask questions, and express ideas without pressure. Moreover, small group dynamics cultivate listening, cooperation, and self-expression—key components of experiential and inclusive learning.

5. Learning by Doing

"Learning by doing" forms the foundation of experiential education and holds particular importance for children with visual impairment. Since these learners primarily rely on non-

visual senses, hands-on engagement becomes essential for concept acquisition. Whether it is cooking to understand measurements, gardening to explore biology, or constructing models to grasp spatial concepts, direct participation transforms abstract learning into concrete understanding. This approach strengthens problem-solving skills, confidence, and adaptability. Teachers can scaffold tasks to match learners' sensory access, ensuring safety and autonomy. Ultimately, "learning by doing" empowers visually impaired students to become active participants in their learning journey rather than passive recipients of information.

6. Role-Play Method

Role-play provides opportunities for experiential learning through dramatization and simulation. It encourages students to assume various roles, explore perspectives, and respond to real-life situations in a controlled environment. For visually impaired learners, role-play enhances communication, empathy, and situational awareness. Teachers can use scenarios such as navigating public spaces, engaging in conversations, or participating in mock interviews to develop social and functional skills. This method allows learners to apply knowledge in realistic contexts while reflecting on their experiences—an essential component of Kolb's experiential cycle. Furthermore, role-play promotes inclusion by allowing visually impaired and sighted peers to collaborate creatively.

7. Experiential Learning through Field Trips and Museums

Field trips and museum visits provide invaluable experiential opportunities for children with visual impairment, connecting classroom learning with the real world. However, these experiences must be carefully adapted to ensure accessibility. Tactile exhibits, audio guides, sensory trails, and interactive demonstrations allow visually impaired students to explore environments meaningfully. Visits to science centers, botanical gardens, or cultural heritage sites can be structured around touch-based exploration, sound mapping, or guided narration. Such experiences enhance spatial orientation, environmental awareness, and social interaction. Importantly, these outings foster independence and self-confidence, reinforcing the belief that learning extends beyond the classroom walls.

8. Debate and Discussion

Debate and discussion encourage critical thinking, reasoning, and verbal expression—skills that are vital for academic success and self-advocacy. For visually impaired learners, structured discussions provide a platform to articulate perspectives, share experiences, and engage intellectually with peers. Teachers can facilitate debates on familiar or experiential topics, ensuring equitable participation through clear turn-taking and verbal cues. This approach cultivates logical reasoning, listening skills, and self-expression, while also promoting democratic classroom culture. Moreover, it aligns with experiential learning's reflective component, as learners analyze and reinterpret ideas through dialogue and feedback.

Importance of Experiential Learning in 21st-Century Pedagogy

In the 21st century, education is shifting from traditional rote learning toward more dynamic, student-centered approaches that emphasize critical thinking, creativity, and real-world

problem-solving. Experiential learning plays a vital role in this pedagogical transformation by fostering active engagement, practical understanding, and adaptability among learners. It bridges the gap between theoretical knowledge and real-life application, preparing students to thrive in rapidly changing social, technological, and economic environments.

Through experiential methods—such as project-based learning, internships, simulations, and community service—students develop essential 21st-century skills like collaboration, communication, digital literacy, and emotional intelligence. This approach aligns with global educational frameworks that advocate for competency-based learning and lifelong education. Moreover, experiential learning encourages reflective thinking, allowing learners to analyze their experiences, identify strengths and weaknesses, and apply lessons to new contexts.

In a world increasingly driven by innovation and interdisciplinary challenges, experiential learning cultivates critical inquiry, leadership, and resilience, empowering students to take ownership of their learning process. It also enhances motivation and retention by connecting curriculum content to meaningful, hands-on experiences. Thus, in 21st-century pedagogy, experiential learning is not merely an alternative strategy—it is an essential framework that nurtures holistic, adaptive, and future-ready learners.

Overview of Inclusive Education and Special Needs Learning

Inclusive education is a progressive approach that ensures equal access, participation, and opportunities for all learners, regardless of their physical, intellectual, social, emotional, linguistic, or other differences. It is grounded in the belief that every child has the right to quality education within a common learning environment that accommodates diverse needs. Inclusive education moves beyond mere integration—it emphasizes modifying teaching methods, learning materials, and classroom environments to support every learner effectively. Special needs learning, a vital component of inclusive education, focuses on students who require additional support due to disabilities, learning difficulties, or developmental delays. It involves designing Individualized Education Plans (IEPs), employing differentiated instruction, and providing assistive technologies and specialized interventions to enhance learning outcomes. Teachers play a crucial role as facilitators, adapting curricula and using multi-sensory teaching methods to cater to varied learning styles.

The overarching goal of inclusive education is to promote equity, respect, and acceptance while fostering a sense of belonging among all students. It benefits not only those with special needs but the entire classroom community by nurturing empathy, collaboration, and social awareness.

Literature Review

The growing body of research on experiential learning for children with visual impairment emphasizes the importance of active, multisensory engagement and adaptive pedagogy to foster inclusion, conceptual comprehension, and independent learning. Ganetsou et al. (2024) conducted a comprehensive synthesis of school-based interventions aimed at enhancing environmental adaptability, conceptual comprehension, and collaboration among visually impaired children. Their findings underscored the success of experiential strategies—such as real-world simulations, tactile exploration, and cooperative learning activities—in improving

social and cognitive development. By integrating environmental and experiential components into the curriculum, the study demonstrated significant improvement in problem-solving and adaptability skills. Similarly, McLinden and Douglas (2013) examined how educational psychology can address the barriers faced by children with sensory needs, emphasizing the need for systematic inclusion, flexible instructional design, and teacher preparedness. Their work proposed that reducing visual dependency in classroom activities and promoting active, sensory-rich learning experiences help bridge the accessibility gap. Plazar, Meulenberg, and Kermauner (2021) further supported these perspectives through their analysis of science education for blind and visually impaired children, showing that tactile experimentation and object-based learning not only improve comprehension of scientific principles but also promote confidence and curiosity. These studies collectively highlight that experiential learning transforms traditional education into an inclusive, participatory process that values sensory diversity and fosters independence among visually impaired learners.

Another dimension of experiential learning's effectiveness for visually impaired students emerges through physical and outdoor education. Richards et al. (2015) explored how a physical activity program rooted in experiential learning principles enhanced the social, cognitive, and motor skills of children with disabilities. Their findings revealed that such programs promote self-efficacy, teamwork, and motivation, reinforcing the idea that experiential learning extends beyond academics into holistic development. Wilson et al. (2020) examined cocurricular service-learning experiences in sports camps for athletes with visual impairments, highlighting their impact on social inclusion, leadership, and peer collaboration. The study demonstrated that experiential, community-based programs offer meaningful engagement opportunities that foster confidence and empathy while promoting physical health. Similarly, Tsinajinie, Kirboyun, and Hong (2021) evaluated an outdoor project-based learning program focused on visually impaired students interested in STEM education. Their research revealed that hands-on, experiential projects strengthened scientific reasoning, problem-solving, and teamwork. These findings confirm that outdoor and physical experiential activities provide crucial opportunities for visually impaired children to develop autonomy, orientation, and collaborative skills—factors often overlooked in traditional classroom instruction. The results from these studies collectively advocate for the inclusion of experiential learning in both curricular and extracurricular settings to nurture the intellectual, emotional, and physical development of learners with visual impairments.

Technological and design-based innovations also play a critical role in enhancing experiential learning experiences for visually impaired children. Güldenpfennig et al. (2019) discussed the role of haptic interface design in creating interactive learning experiences that blend technology with sensory engagement. Their work revealed that tactile and haptic tools—such as vibrating surfaces, 3D models, and responsive interfaces—enable children to interact with abstract concepts in concrete ways, supporting multisensory exploration and cognitive development. Similarly, Brulé et al. (2018) explored the use of multisensory maps that combine tactile and auditory feedback to facilitate spatial learning and environmental navigation for visually impaired children. Their study highlighted that such tools not only

improved spatial orientation and memory but also enhanced engagement and curiosity. These findings affirm that assistive technologies integrated into experiential learning frameworks can effectively bridge sensory limitations by offering new modes of perception and interaction. Collectively, these studies demonstrate that experiential learning—whether through tactile exploration, outdoor activities, or interactive technologies—significantly contributes to academic and social empowerment for visually impaired learners. By combining real-world engagement, multisensory design, and inclusive pedagogy, experiential learning emerges as a holistic educational approach that promotes equity, autonomy, and meaningful participation, aligning with global inclusive education goals and 21st-century learning paradigms.

Methodology

The study on experiential learning for children with visual impairment adopted a mixed-method research design, integrating both quantitative and qualitative approaches to obtain comprehensive insights into learning outcomes and experiences. The research was conducted among 100 visually impaired students and 30 teachers from inclusive and special schools. A purposive sampling technique was used to select participants actively involved in experiential learning activities. Data collection involved pre- and post-tests to measure academic performance, structured questionnaires to capture student and teacher perceptions, and interviews and observations to explore behavioral and emotional responses. Quantitative data were analyzed using descriptive and inferential statistics, including mean, t-test, and correlation analysis to determine the significance of performance improvements. Qualitative data were thematically analyzed to identify recurring patterns such as confidence, engagement, and inclusion. Ethical considerations, including informed consent, confidentiality, and sensitivity to participants' needs, were strictly followed. The study's methodological framework ensured both empirical rigor and contextual understanding, enabling the evaluation of how experiential learning—through tactile, auditory, and kinesthetic methods—enhances conceptual clarity, motivation, and overall academic growth among visually impaired learners, while also identifying challenges in implementation and resource accessibility within inclusive education environments.

Result and Discussion

Table 1: Improvement in Academic Performance After Experiential Learning Intervention

Learning Domain	Pre-Test Mean Score	Post-Test Mean Score	Mean Difference	t-value	p-value	Interpretation
Concept Understanding	62.4	81.6	+19.2	6.21	0.000	Significant improvement
Problem-Solving Ability	58.7	80.2	+21.5	7.14	0.000	Significant improvement

Memory Retention	65.3	83.1	+17.8	5.96	0.001	Significant improvement
Verbal Expression	68.9	85.4	+16.5	6.47	0.000	Significant improvement
Overall Academic Performance	63.8	82.6	+18.8	6.45	0.000	Highly significant

Table 1 presents the comparative results of pre-test and post-test mean scores across various learning domains, demonstrating the positive impact of experiential learning among visually impaired learners. The findings reveal a significant increase in scores for all domains, with the highest improvement observed in problem-solving ability (+21.5) and concept understanding (+19.2). The t-values (ranging from 5.96 to 7.14) and p-values (≤ 0.001) confirm statistically significant gains, suggesting that hands-on, multisensory engagement enhanced comprehension, memory, and expression. Learners showed marked progress in conceptual clarity, retention, and verbal articulation through tactile and kinesthetic activities. The overall academic performance improved from a mean of 63.8 to 82.6, indicating a highly significant enhancement in learning outcomes. These results affirm that experiential learning fosters deeper cognitive processing, better recall, and holistic understanding, making it a powerful pedagogical approach for children with visual impairment.

Table 2: Student Perception of Experiential Learning Activities (N = 100)

Statement	Strongly Agree (%)	Agree (%)	Neutral (%)	Disagree (%)	Strongly Disagree (%)
I enjoy learning through hands-on activities.	70	25	4	1	0
Experiential learning helps me understand lessons better.	65	30	3	2	0
I feel more confident when I can touch or explore materials.	72	22	4	2	0
Learning by doing helps me remember things longer.	68	27	3	2	0
I prefer experiential methods over traditional lectures.	63	29	5	3	0

Table 2 highlights the perceptions of visually impaired students toward experiential learning, reflecting overwhelmingly positive attitudes. A majority (70%) strongly agreed that they enjoy hands-on learning, and 72% expressed greater confidence when allowed to explore materials physically. Similarly, 68% agreed that learning by doing aids long-term retention,

while 65% found experiential activities more effective in understanding lessons. Only a negligible percentage expressed neutrality or disagreement, indicating broad acceptance. These results suggest that experiential learning increases motivation, engagement, and self-efficacy among visually impaired learners. By replacing passive listening with active participation, students develop stronger conceptual understanding and emotional connection with learning tasks. The findings demonstrate that experiential learning not only enhances academic comprehension but also fosters confidence, independence, and curiosity, creating a supportive and enjoyable educational experience for learners who rely on tactile and auditory modes of learning.

Table 3: Teacher Evaluation of Experiential Learning Effectiveness (N = 30)

Criteria	Highly Effective (%)	Effective (%)	Moderate (%)	Less Effective (%)	Not Effective (%)
Student Participation	80	16	4	0	0
Concept Clarity	75	20	5	0	0
Creativity and Problem Solving	70	25	5	0	0
Classroom Interaction	85	12	3	0	0
Inclusion and Teamwork	78	18	4	0	0

Table 3 presents teachers' assessments of experiential learning's effectiveness for visually impaired students. The majority rated the approach as highly effective in key areas such as classroom interaction (85%), student participation (80%), and inclusion (78%). Teachers also found notable improvement in concept clarity (75%) and creativity (70%), signifying that experiential learning encourages critical thinking and problem-solving skills. No teacher rated the approach as ineffective, indicating unanimous recognition of its benefits. Teachers observed that students demonstrated higher engagement, teamwork, and understanding when exposed to tactile and experiential activities compared to traditional methods. These findings affirm that experiential learning supports inclusive education by accommodating diverse sensory needs and enhancing teacher-student interaction. However, educators also emphasized the need for more tactile resources and professional training to optimize implementation.

Recommended practices in the implementation of experiential learning

Implementing experiential learning for children with visual impairment requires deliberate planning, sensitivity to diverse needs, and the use of multisensory teaching methods. Teachers should begin by creating inclusive lesson plans that integrate tactile, auditory, and kinesthetic elements, ensuring every learner can access content through experience. Learning environments must be structured for safe movement and exploration, equipped with adapted

materials such as Braille resources, tactile models, and audio aids. Collaboration between general and special educators is essential to design activities that balance academic goals with sensory engagement. Reflection should be embedded after each activity to help learners connect experience with understanding. Teachers should adopt differentiated instruction, allowing flexibility in pacing and methods based on individual sensory strengths. Training and capacity building for educators are vital to enhance confidence in implementing experiential strategies. Community-based learning, field visits, and peer-assisted activities should be incorporated to extend experiential opportunities beyond the classroom. Continuous assessment through observation, feedback, and self-reflection ensures that learning remains meaningful and student-centered. Above all, inclusive attitudes, empathy, and creativity must guide practice, transforming classrooms into dynamic environments where children with visual impairment learn through doing, interacting, and discovering—thereby achieving holistic growth and educational equity.

Conclusion

Incorporating experiential learning strategies into inclusive education fosters a holistic environment where children with visual impairment can learn through active engagement, sensory exploration, and collaborative reflection. Each method—whether storytelling, group work, or field exploration—translates theoretical knowledge into lived experience. Together, they nurture cognitive, emotional, and social development while reinforcing independence and confidence. For teachers, adopting such strategies requires creativity, empathy, and professional training to design multisensory experiences that cater to diverse learners. Experiential learning transforms the classroom into an inclusive space of discovery, where children with visual impairment are not defined by limitations but empowered by experience. The study concludes that experiential learning serves as a transformative and inclusive pedagogical approach that significantly enhances the educational experiences and outcomes of children with visual impairment. By shifting from passive instruction to active participation, experiential learning empowers students to engage with concepts through tactile, auditory, and kinesthetic experiences, thereby fostering deeper understanding, improved memory retention, and greater confidence. The findings revealed marked improvements in academic performance, problem-solving skills, and verbal expression, alongside heightened motivation and independence. Both students and teachers recognized experiential learning as a powerful means of making education more interactive, meaningful, and accessible. The tactile and multisensory nature of this approach bridges the gap between abstract concepts and real-world understanding, allowing visually impaired learners to construct knowledge through direct experience and reflection. Teachers also observed improved classroom interaction, inclusion, and collaboration, highlighting the approach's social and emotional benefits. However, challenges such as limited tactile resources, inadequate teacher training, and infrastructural constraints remain significant barriers to full implementation. Addressing these issues requires curriculum redesign, investment in assistive technologies, and continuous teacher capacity building. Overall, the study affirms that experiential learning not only enhances academic achievement but also nurtures confidence,

independence, and holistic development—key components of inclusive education. It redefines learning as a sensory-rich, participatory process that values every learner's potential, reinforcing that education should be a shared, experiential journey that transcends limitations and celebrates diverse ways of knowing and understanding the world.

References

1. Ganetsou, E., Papadakou, C., Chatzaki, V., Tsalera, E., & Leeson, L. (2024). 'Make A Change': A Comprehensive Synthesis of School-Based Interventions for Teaching Environmental Adaptiveness, Conceptual Comprehension, and Collaborative Learning to Elementary School Children with Visual Impairments. *International Journal of Childhood Education*, 5(1), 14-27.
2. McLinden, M., & Douglas, G. (2013). Education of children with sensory needs: Reducing barriers to learning for children with visual impairment. In *The Routledge international companion to educational psychology* (pp. 246-255). Routledge.
3. Richards, K. A. R., Eberline, A. D., Padaruth, S., & Templin, T. J. (2015). Experiential learning through a physical activity program for children with disabilities. *Journal of teaching in physical education*, 34(2), 165-188.
4. Plazar, J., Meulenberg, C. J., & Kermauner, A. (2021). Science education for blind and visually impaired children. *Metodički ogledi: časopis za filozofiju odgoja*, 28(1), 167-190.
5. Tsinajinie, G., Kirboyun, S., & Hong, S. (2021). An outdoor project-based learning program: Strategic support and the roles of students with visual impairments interested in STEM. *Journal of Science Education and Technology*, 30(1), 74-86.
6. Güldenpfennig, F., Wagner, A., Fikar, P., Kaindl, G., & Ganhör, R. (2019). Enabling learning experiences for visually impaired children by interaction design. In *Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life* (pp. 3-33). Cham: Springer International Publishing.
7. Brulé, E., Bailly, G., Brock, A., Gentès, A., & Jouffrais, C. (2018). An exploratory study of the uses of a multisensory map—with visually impaired children. *Multimodal Technologies and Interaction*, 2(3), 36.
8. Wilson, W. J., Haegle, J. A., Holland, S. K., & Richards, K. A. R. (2020). Cocurricular service-learning through a camp for athletes with visual impairments. *Journal of Teaching in Physical Education*, 40(2), 190-198.
9. Brulé, E., & Bailly, G. (2018, April). Taking into Account Sensory Knowledge: The case of geo-technologies for children with visual impairments. In *Proceedings of the 2018 CHI conference on human factors in computing systems* (pp. 1-14).
10. Haegle, J. A., & Zhu, X. (2017). Experiences of individuals with visual impairments in integrated physical education: A retrospective study. *Research quarterly for exercise and sport*, 88(4), 425-435.
11. Chang, S. M. (2021, March). Study on Experiential Learning of Universal Design. In *2021 9th International Conference on Information and Education Technology (ICIET)* (pp. 291-295). IEEE.

12. Fedorenko, S., & Polykovski, M. (2020). Experimental method for developing and correcting figurative speech among visually impaired primary school age children. *International Journal of Pedagogy, Innovation and New Technologies*, (7 (2), 58-63.
13. Lieberman, L. J., Haibach-Beach, P., Perreault, M., & Stribing, A. (2023). Outdoor recreation experiences in youth with visual impairments: a qualitative inquiry. *Journal of adventure education and outdoor learning*, 23(2), 170-183.
14. Silberman, R. K. (2000). with Visual Impairments and Other Exceptionalities. *Foundations of education: History and theory of teaching children and youths with visual impairments*, 1, 173.
15. Widajati, W., Mahmudah, S., Ekasari, D., Dwirisnanda, D. A., Rahmadiani, K. D., Minarsih, N. M. M., ... & Ainin, I. K. (2023, December). Experiential learning to improve vocational life skill disabilities in inclusive schools. In *International Joint Conference on Arts and Humanities 2023 (IJCAH 2023)* (pp. 1246-1257). Atlantis Press.