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Abstract—The application of digital signal processing (DSP) and
image processing, arithmetic operations are essential components.
Particularly, digital filters needed to be designed with an efficient
multiplier. Nowadays, there are lots of handheld portable battery-
operated devices require the hardware efficient and error free
computer arithmetic operations. As we aware that multiplier
is hardware thirsty and make response slow of any hardware
architecture. A lot of research efforts have been directed to
design hardware and performance efficient multiplier. The real
world is full of applications of Logarithm Number System (LNS)
based multiplier which motivates the researchers to design it an
efficient LNS. This article shows the importance of the Logarithm
numbers and its importance for hardware implementation for
multipliers. In this article authors demonstrate various types of
logarithm multiplier. This paper try to summarized various types
of logarithm multiplier at one platform.
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I. INTRODUCTION

Arithmetic operation is an important component for Digital
Signal Processing (DSP) and Image processing applications
[1, 2]. Especially, digital filters needed to be designed with an
efficient multiplier [3]. Nowadays, there are lots of handheld
portable battery-operated devices require the hardware efficient
and error free computer arithmetic operations [4]. As we aware
that multiplier is hardware thirsty and make response slow
of any hardware architecture. A lot of research efforts have
been directed to design hardware and performance efficient
multiplier.

The real world is full of applications of Logarithm Num-
ber System (LNS) based multiplier which motivates the re-
searchers to design it an efficient LNS. Few of these applica-
tions are briefly discussed here. Due to numerous applications
of the logarithm multiplier in DSP, it motivates researchers to
come forefront to contribute research efforts. In next Section
Logarithm Number System, their importance and logarithm
multiplier have been introduced.

II. LOGARITHM NUMBER SYSTEM

Multiplication and division operations have shown the delay
and the requirement of extra hardware. Due to these reasons,
most of the weighted binary number arithmetic units may have
to compromise at speed and area of circuits. DSP applications
have a primary goal to process an operation faster with an
efficient hardware which may not be full-filled due to the
issues of the binary number system. To overcome these issues,
LNS addresses to these issues and overcomes the technical

gaps. LNS provides a new approach to speed up the slow mul-
tiplication and division with a conventional weighted number,
it avoids the issues inherent in RNS. Mathematicians have
used logarithms to simplify the mathematical operations like
multiplication, division, etc. because these operations can be
performed by using addition and subtraction. LNS multipliers
are advantageous in terms of speed and accuracy over other
multipliers circuits [5, 6]. LNS based on multiplier supports
integer or FXP data and FLP data both data types. FXP
multiplication is used in DSP applications, Due to its an easier
algorithm, faster implementation and a clear understanding.
The FLP representation is a suitable choice at the place where
decimal notations have essential criteria to represent the non-
integer number. The floating-point logarithmic numbers are
kept in the following format [7]: Here, first 2-bits are reserved

for flag code of a special exception (like negative, zero, Not
a Number (NaN) and +/ −∞) [8]. A detailed study of the
reported LNS methods, available design algorithms and design
limitations is presented in section 3 to 6.

III. VARIOUS METHODS OF LNS MULTIPLICATION

Conventionally, various methods of LNS multiplication are
divided in two broaden categories: (1) methods that use lookup
tables (LUT) and interpolation and (2) methods based on the
Mitchell’s algorithm [5]. Foreplaning of logarithm-based on
multiplication methods is arranged in the organization model
given in Figure 1.

IV. LUT AND INTERPOLATION BASED LOGARITHMIC
MULTIPLICATION

The most traditional method for logarithmic multiplication is
the multiplication get performed by using lookup table. In
this method complete possible values of logarithm are stored
in ROM [9]. Major disadvantage of this method is the long
memory space and may not suitable of ROM usage for long
word. Especially, in case of higher than 20 bits LUT are
required. Meanwhile, it has suitability for small bits, like 4
to 12 bits. Researchers work to investigated for using small
lookup tables is known as bit partitioning [10, 11]. In some
research works, bipartite tables are used for table reduction
[10–14]. In this table reduction techniques two equally sized
LUTs is used in parallel access. It makes design faster in speed
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Fig. 1. Organization Model of Logarithmic Multiplication

and hardware efficient. This approach is useful for 10-12 bits
range multiplication process. However, the extension of the
bipartite table, is known as the multipartite table had suffered
increment in size. Its limits the approach to only 13-bits [15].

In spite of the attempts at reducing the amount of memory
to store lookup tables, there is strong interest in Mitchell’s
algorithm, which completely eliminates the use of lookup
tables.

V. MITCHELL’S MULTIPLICATION ALGORITHM

In 1962, Mitchell proposes an algorithm based on binary
algorithm which provides method for computer multiplication
and division [5]. At Mitchell’s algorithm simply add and
shift operation is required to multiply any two numbers.
For ease understanding of Mitchell’s algorithm, we can go
step by step for multiplication of two inputs name as A
and B. Mitchell’s algorithm shows some error due to his
fraction part of logarithms. At Mitchell’s method the error
lies between zero to 11.1% and average error is 3.85% [16],
so we can say that the maximum possible error (MPE) is
around 11.1% and it occur when both of the fraction parts
are equal to 0.5 [16]. For minimizing error in future, it is
must necessary to understand step by step error analysis of
Mitchell’s multiplication algorithm.

A. Divided Approximation (DA) Based Correction

In Mitchell’s logarithm that uses a piecewise linear curve
and producing larger errors was later improved [17–31]. In
these methods, authors have suggested a conversion method
to achieve high accuracy with lower delay and area costs.

1) Hall’s Correction Coefficients: Hall’s algorithm [32]
is uses all bits in the mantissa for adjustment. Therefore,
requires more adders due to the slope multiplied by the
mantissa. Mantissa was divided into four sub parts and apply-
ing linear piecewise approximation. It reduced the maximum
error percentage of logarithmic multiplication from 11.1 % in
Mitchell’s method to 1.3%.

2) SanGregory’s Correction Coefficients: SanGregory’s
proposed correcting algorithm for making logarithm multipli-
cation fast. It uses only mantissa’s four MSB for adjustment
of concatenated result [26]. It has two region conversion for
improving accuracy of Mitchell’s logarithm at the cost of
small hardware over-head in from of ROM circuits [26]. The
proposed algorithm has performed four basic operations:

1) Determination of the leading one bit,
2) Re-alignment of all bits,
3) Generation of characteristics bit and
4) Adjustment of concatenated result.

Its two region conversion methods is performed using only
combinational logic and requires no multiplications.

3) Abed and Siferd’s Correction Coefficients: Abed and
Siferd developed correction algorithm that required trade-off
between the accuracy, speed and complexity. The equations
for the 2–region correcting logarithm algorithm Maximum
percent error for 2–region correcting logarithm is range over
−0.9299 to 0.5544 and -0.5631 to 1.3310 for antilogarithm
equations. The maximum error using the 6–region antiloga-
rithm approximation ranges over −0.5786 to 0.9572. A higher
approximation region demands more area and complex cir-
cuitry. Therefore, Juang’s use a two-region conversion method
to achieve high accuracy with low area and complexity of
circuit.

4) Juang’s Correction Coefficients: Juang et. al [22] pro-
posed a two-region bit level manipulation schemes to achieve
high accuracy with area, time and efficient hardware imple-
mentation. The maximum error using the Juang et al. 2–region
logarithm approximation ranges over 0 to 0.0319 and ranges
over −0.60 to 1.72 for antilogarithm converter.

B. Correction Term–Based Methods

The correction term-based methods analyzed error gen-
erated by the Mitchell algorithms and analysis used for a
method which improves the accuracy. It can be achieved
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by adding a correction term either to final product or the
logarithm summation [5, 33]. Mitchell’s developed analytical
expressions for error and be added error to the product result.
For Mitchell’s Error Correction (MEC) carryover bit from the
mantissa part to the integer part determines which one of the
following two equations are to be used for correction:

PM.E.C. = PM.A. + 2k1+k2x1x2 where x1 + x2 < 1 (1)

PM.E.C. = PM.A. + 2k1+k2y1y2 where x1 + x2 ≥ 1 (2)

C. Operand Decomposition

The operand decomposition is independent approach of
minimizing error and applicable to all previous logarithmic
multiplication approaches [16]. Suppose, for multiplying two
n–bit binary numbers X and Y at first, the operand X and
Y are decomposed into the following four operands A, B, C
and D. where decomposed operands are calculated using the
following equations:

A = X + Y (3)
B = X · Y (4)

C = X · Y (5)

D = X · Y (6)

The product is computed from the decomposed operands using
the following property.

X · Y = (A ·B) + (C ·D) (7)

The decomposition increases the number of 0 bits and hence
decreases the switching power in the multiplication operation.
Due to increases 0 bits, decreases the chances of a carryover
from the mantissa part. Nandan et al. extended operand
decomposition concept at 2017 and 2018 [34, 35].

D. Iterative Logarithmic Multiplier

Iterative logarithmic approximation is based on the cor-
rection terms, calculated immediately after the calculation
of the product which avoids the comparison of the sum of
mantissas with ‘1’. In this way, high level of parallelism can be
achieved by the principle of pipelining, thus the basic block for
multiplication requires less logic resources and increasing the
speed of the multiplier with error correction circuits. Durgesh
et al. proposed efficient architecture of iterative logarithm
multiplier at 2017 and 2018 [36].

VI. CONCLUSION

This article shows the importance of the Logarithm numbers
and its importance for hardware implementation for multi-
pliers. In this article authors demonstrate various types of
logarithm multiplier. Authors try to summarized various types
of logarithm multiplier at one platform.
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