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ABSTRACT 

The rapid growth of software systems has 

been accompanied by a steady increase in 

reported security vulnerabilities, creating 

significant challenges for organizations 

attempting to prioritize mitigation efforts. 

Since only a small subset of disclosed 

vulnerabilities are eventually exploited, 

early identification of exploit-prone 

vulnerabilities is critical for effective 

vulnerability management. This study 

proposes a parameterized machine learning 

approach for predicting exploit likelihood at 

the time of vulnerability disclosure, relying 

exclusively on static vulnerability 

parameters available at early stages. Using 

features derived from Common 

Vulnerability Scoring System (CVSS) 

metrics and disclosure metadata, multiple 

supervised classification models are 

developed and evaluated. The results 

demonstrate that parameterized machine 

learning models can achieve meaningful 

predictive accuracy without relying on post-

disclosure or exploit-availability data. The 

findings highlight the practical value of 

early-stage exploit prediction for secure 

software development, proactive defense, 

and efficient patch prioritization. 
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1. INTRODUCTION 

Software vulnerabilities remain one of the 

most critical threats to information security. 

Each year, thousands of vulnerabilities are 

disclosed through public repositories such as 

the National Vulnerability Database (NVD). 

However, empirical evidence consistently 

shows that only a fraction of disclosed 

vulnerabilities are ever exploited in real-

world attacks, while security teams are 

forced to respond to all disclosures with 

limited resources. This imbalance creates an 

urgent need for accurate methods to identify 

exploit-prone vulnerabilities as early as 

possible. 

Traditional vulnerability management 

practices rely heavily on severity scores 

such as CVSS or on the later appearance of 

public exploits. While severity scores 

provide a general assessment of potential 

impact, they are not designed to predict 

attacker behavior. Similarly, waiting for 

exploit code to appear defeats the purpose of 

early risk mitigation. As a result, 

organizations often misallocate patching 

resources, focusing on highly scored but 
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rarely exploited vulnerabilities while 

overlooking lower-scored vulnerabilities that 

are actively exploited. 

Machine learning has emerged as a 

promising approach for vulnerability exploit 

prediction. Most existing studies, however, 

rely on temporal or dynamic features, such 

as exploit availability, social media activity, 

or post-disclosure trends. These features are 

not available at the time of vulnerability 

disclosure, limiting their usefulness for 

early-stage decision-making. 

This paper addresses this gap by proposing a 

parameterized machine learning framework 

that predicts exploit likelihood at disclosure 

time using only static vulnerability 

parameters. The study evaluates whether 

early-available features can provide 

sufficient predictive power to support secure 

software development and effective patch 

prioritization. 

2. RELATED WORK 

Prior research on vulnerability exploit 

prediction can be broadly categorized into 

severity-based, temporal-based, and machine 

learning-based approaches. Severity-based 

methods rely primarily on CVSS scores, 

assuming that higher severity implies higher 

exploit likelihood. However, multiple 

studies have shown weak correlation b

etween CVSS severity and real-world 

exploitation. 

Machine learning-based approaches have 

demonstrated improved performance by 

learning patterns from historical 

vulnerability data. Sabottke et al. showed 

that social media signals could improve 

exploit prediction, while other studies 

incorporated exploit database references or 

temporal trends. Although these approaches 

yield high accuracy, they depend on 

information that becomes available only 

after disclosure. 

A smaller body of work has explored early-

stage exploit prediction, focusing on static 

features such as vulnerability type, attack 

vector, and impact metrics. These studies 

suggest that attacker preferences can be 

partially inferred from intrinsic vulnerability 

characteristics. However, comprehensive 

evaluations of parameterized models using 

only static features remain limited. 

This research contributes to the literature by 

systematically analyzing how static 

vulnerability parameters, when combined 

with parameterized machine learning 

models, can support reliable exploit 

prediction at disclosure time. 

3. RESEARCH OBJECTIVES 

The main objectives of this study are: 

1. To develop machine learning models 

capable of predicting exploit 

likelihood at the time of vulnerability 

disclosure. 

2. To evaluate the effectiveness of static 

vulnerability parameters in exploit 

prediction. 

3. To compare the performance of 

different classifier algorithms under 

a parameterized modeling 

framework. 

4. To analyze the practical implications 

of early-stage exploit prediction for 

secure software development and 

patch prioritization. 

4. METHODOLOGY 

4.1 Dataset Description 

The study uses publicly available 

vulnerability data collected from the 

National Vulnerability Database (NVD). 
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Exploit labels are assigned by matching 

CVE identifiers with known exploit 

references from exploit repositories. 

Vulnerabilities are classified into two 

categories: exploit-prone and non-exploit-

prone. 

4.2 Feature Selection: Static Vulnerability 

Parameters 

Only features available at disclosure time 

are considered. These include: 

• CVSS Base Metrics: Attack Vector, 

Attack Complexity, Privileges 

Required, User Interaction, 

Confidentiality Impact, Integrity 

Impact, Availability Impact, and 

Base Score. 

• Vulnerability Metadata: 

Vulnerability type, affected platform, 

and disclosure year. 

• Structural Parameters: Categorical 

encoding of vulnerability class (e.g., 

buffer overflow, injection, access 

control). 

No temporal, exploit-availability, or post-

disclosure features are used. 

4.3 Machine Learning Models 

The following supervised classifiers are 

implemented: 

• Logistic Regression 

• Support Vector Machine (SVM) 

• Random Forest 

• Gradient Boosting (XGBoost) 

Each model is parameterized using 

optimized hyperparameters determined 

through cross-validated search techniques. 

4.4 Evaluation Metrics 

Model performance is evaluated using: 

• Accuracy 

• Precision 

• Recall 

• F1-Score 

• Area Under the ROC Curve (AUC) 

Stratified k-fold cross-validation is used to 

ensure robustness. 

5. RESULTS AND ANALYSIS 

The experimental results indicate that 

parameterized machine learning models can 

effectively identify exploit-prone 

vulnerabilities at early stages. 

Random Forest and Gradient Boosting 

models outperform linear classifiers, 

achieving higher F1-scores and AUC values. 

The inclusion of detailed CVSS base metrics 

significantly improves model performance 

compared to using overall severity scores 

alone. Results further show that attack 

vector and attack complexity are among the 

most influential predictors, reflecting 

attacker preference for remotely exploitable 

and low-complexity vulnerabilities. 

Despite relying exclusively on static 

parameters, the best-performing models 

demonstrate strong discriminative ability, 

confirming the feasibility of early-stage 

exploit prediction. 

6. DISCUSSION 

The findings of this study highlight the 

importance of feature granularity and 

model parameterization in vulnerability 

exploit prediction. While static features do 

not capture attacker behavior directly, they 

encode meaningful signals about exploit 

feasibility and potential reward. Machine 

learning models are able to learn these 

signals and generalize across vulnerability 

classes. 

From a practical perspective, early-stage 

exploit prediction can significantly enhance 

secure software development lifecycles. 

Developers can prioritize code reviews and 
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testing efforts for vulnerabilities predicted to 

be exploit-prone, while security teams can 

allocate patching resources more effectively. 

The study also demonstrates that meaningful 

security intelligence can be extracted 

without relying on external or post-

disclosure data, making the approach 

suitable for real-time vulnerability 

assessment systems. 

7. CONCLUSION 

This research has demonstrated that the 

early-stage identification of exploit-prone 

software vulnerabilities is both feasible and 

effective when using parameterized machine 

learning models that rely exclusively on 

static vulnerability parameters. Contrary to 

conventional practices that depend on post-

disclosure indicators such as exploit 

availability, attack trends, or temporal 

signals, this study confirms that meaningful 

predictive intelligence can be extracted at 

the moment of vulnerability disclosure. By 

utilizing structured information embedded 

within CVSS base metrics and disclosure-

time metadata, machine learning models can 

infer exploit likelihood with a high degree of 

reliability. 

The findings clearly show that granular 

CVSS base metrics are substantially more 

informative than aggregate severity scores 

alone. Parameters such as attack vector, 

attack complexity, required privileges, and 

user interaction play a decisive role in 

determining exploit feasibility. These 

parameters effectively encode attacker 

effort, accessibility, and potential impact—

key factors influencing real-world 

exploitation decisions. When processed 

through parameterized learning models, 

these static attributes collectively enable 

accurate classification of exploit-prone 

vulnerabilities, even in the absence of 

exploit code or attacker activity data. 

A key contribution of this research lies in its 

demonstration that early-stage exploit 

prediction supports proactive security 

decision-making. Security teams are often 

constrained by limited resources and must 

prioritize mitigation efforts across thousands 

of disclosed vulnerabilities. Early predictive 

insights allow organizations to focus on 

vulnerabilities with a higher probability of 

exploitation, thereby improving the 

efficiency of patch management processes. 

This approach reduces the risk window 

between vulnerability disclosure and 

remediation, which is critical in preventing 

large-scale security breaches. 

From a software engineering perspective, 

the results highlight the importance of 

integrating exploit prediction mechanisms 

into the secure software development 

lifecycle (SSDLC). Early identification of 

exploit-prone weaknesses enables 

developers to prioritize secure coding 

practices, targeted code reviews, and 

rigorous testing for high-risk components. 

This proactive stance enhances overall 

software resilience and reduces long-term 

maintenance and incident response costs. 

The research also demonstrates the practical 

applicability of parameterized machine 

learning models in real-world environments. 

Because the proposed approach relies only 

on static features available at disclosure 

time, it is well-suited for automation within 

vulnerability assessment tools, security 

dashboards, and continuous integration 

pipelines. Organizations can deploy such 

models without relying on external threat 
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intelligence feeds or waiting for exploit 

confirmation, making early-stage risk 

assessment both scalable and cost-effective. 

Despite these promising results, the study 

acknowledges certain limitations. Static 

vulnerability parameters, while informative, 

cannot capture evolving attacker behavior, 

exploit chaining, or contextual deployment 

factors such as asset criticality and exposure. 

As such, early-stage predictions should be 

viewed as decision-support mechanisms 

rather than definitive indicators of 

exploitation. Nonetheless, their value in 

guiding prioritization and risk mitigation is 

substantial. 

Future research directions include the 

integration of explainable artificial 

intelligence (XAI) techniques to improve 

transparency and trust in machine learning-

based exploit prediction systems. 

Explainable models would allow security 

analysts to understand why certain 

vulnerabilities are classified as exploit-

prone, facilitating better human–machine 

collaboration. Additionally, evaluating 

model performance across diverse software 

ecosystems, programming languages, and 

industrial domains would further strengthen 

generalizability. Combining static 

parameter-based models with controlled 

dynamic signals may also enhance 

prediction accuracy while preserving early-

stage applicability. 

This research establishes that parameterized 

machine learning models using static 

vulnerability parameters provide a viable, 

practical, and effective solution for early-

stage exploit-prone vulnerability 

identification. By enabling timely and 

informed security decisions, this approach 

contributes significantly to improved 

vulnerability management, stronger secure 

software development practices, and 

enhanced organizational cyber resilience. 
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