ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

International Journal of Research and Technology Volume 12, Issue 1_ February 2024

Early-Stage Identification of Exploit-Prone Vulnerabilities Using
Parameterized Machine Learning Models

'Deepanshu Sharma,?Dr. Inderpal Singh Oberoi
'Research Scholar, Department of Computer Applications, Maharaja Agrasen Himalayan
Garhwal University

2 Assistant Professor, Department of Computer Applications, Maharaja Agrasen Himalayan
Garhwal University

ABSTRACT

The rapid growth of software systems has
been accompanied by a steady increase in
reported security vulnerabilities, creating
significant challenges for organizations
attempting to prioritize mitigation efforts.
Since only a small subset of disclosed
vulnerabilities are eventually exploited,
early identification of exploit-prone
vulnerabilities is critical for effective
vulnerability management. This study
proposes a parameterized machine learning
approach for predicting exploit likelihood at
the time of vulnerability disclosure, relying
exclusively on static vulnerability
parameters available at early stages. Using
features derived from Common
Vulnerability Scoring System (CVSS)
metrics and disclosure metadata, multiple
supervised classification models are
developed and evaluated. The results
demonstrate that parameterized machine
learning models can achieve meaningful
predictive accuracy without relying on post-
disclosure or exploit-availability data. The
findings highlight the practical value of
early-stage exploit prediction for secure
software development, proactive defense,
and efficient patch prioritization.

www.ijrt.org

Keywords: Exploit Prediction; Software
Vulnerabilities; Machine Learning; CVSS;
Early-Stage Security Assessment; Patch
Prioritization; Secure Software Development
1. INTRODUCTION

Software vulnerabilities remain one of the
most critical threats to information security.
Each year, thousands of vulnerabilities are
disclosed through public repositories such as
the National Vulnerability Database (NVD).
However, empirical evidence consistently
shows that only a fraction of disclosed
vulnerabilities are ever exploited in real-
world attacks, while security teams are
forced to respond to all disclosures with
limited resources. This imbalance creates an
urgent need for accurate methods to identify
exploit-prone vulnerabilities as early as
possible.
Traditional ~ vulnerability = management
practices rely heavily on severity scores
such as CVSS or on the later appearance of
public exploits. While severity scores
provide a general assessment of potential
impact, they are not designed to predict
attacker behavior. Similarly, waiting for
exploit code to appear defeats the purpose of
early risk mitigation. As a result,
organizations often misallocate patching
resources, focusing on highly scored but

25

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

rarely exploited vulnerabilities while
overlooking lower-scored vulnerabilities that
are actively exploited.

Machine learning has emerged as a
promising approach for vulnerability exploit
prediction. Most existing studies, however,
rely on temporal or dynamic features, such
as exploit availability, social media activity,
or post-disclosure trends. These features are
not available at the time of vulnerability
disclosure, limiting their usefulness for
early-stage decision-making.

This paper addresses this gap by proposing a
parameterized machine learning framework
that predicts exploit likelihood at disclosure
etween CVSS severity and real-world
exploitation.

Machine learning-based approaches have
demonstrated improved performance by
learning patterns from historical
vulnerability data. Sabottke et al. showed
that social media signals could improve
exploit prediction, while other studies
incorporated exploit database references or
temporal trends. Although these approaches
yield high accuracy, they depend on
information that becomes available only
after disclosure.

A smaller body of work has explored early-
stage exploit prediction, focusing on static
features such as vulnerability type, attack
vector, and impact metrics. These studies
suggest that attacker preferences can be
partially inferred from intrinsic vulnerability
characteristics. However, comprehensive
evaluations of parameterized models using
only static features remain limited.

This research contributes to the literature by
systematically
vulnerability parameters, when combined

analyzing how static

www.ijrt.org

International Journal of Research and Technology Volume 12, Issue 1_ February 2024

time wusing only static vulnerability
parameters. The study evaluates whether
early-available provide
sufficient predictive power to support secure
software development and effective patch
prioritization.

2. RELATED WORK

Prior research on vulnerability exploit
prediction can be broadly categorized into
severity-based, temporal-based, and machine
learning-based approaches. Severity-based
methods rely primarily on CVSS scores,
assuming that higher severity implies higher
exploit likelihood. However, multiple
studies have shown weak -correlation b

features can

with parameterized machine learning
models, can support reliable exploit
prediction at disclosure time.

3. RESEARCH OBJECTIVES

The main objectives of this study are:

1. To develop machine learning models
capable of predicting exploit
likelihood at the time of vulnerability
disclosure.

2. To evaluate the effectiveness of static
vulnerability parameters in exploit
prediction.

3. To compare the performance of
different classifier algorithms under
a parameterized modeling
framework.

4. To analyze the practical implications
of early-stage exploit prediction for
secure software development and
patch prioritization.

4. METHODOLOGY

4.1 Dataset Description

The study uses publicly available
vulnerability data collected from the
National Vulnerability Database (NVD).

26

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

Exploit labels are assigned by matching
CVE identifiers with known exploit
references from exploit repositories.
Vulnerabilities are classified into two
categories: exploit-prone and non-exploit-
prone.

4.2 Feature Selection: Static Vulnerability
Parameters

Only features available at disclosure time
are considered. These include:

o CVSS Base Metrics: Attack Vector,
Attack Complexity, Privileges
Required, User Interaction,
Confidentiality Impact, Integrity
Impact, Availability Impact, and
Base Score.

e Vulnerability Metadata:
Vulnerability type, affected platform,
and disclosure year.

e Structural Parameters: Categorical
encoding of vulnerability class (e.g.,
buffer overflow, injection, access
control).

No temporal, exploit-availability, or post-
disclosure features are used.

4.3 Machine Learning Models

The following supervised classifiers are
implemented:

o Logistic Regression

e Support Vector Machine (SVM)

e Random Forest

e Gradient Boosting (XGBoost)

Each model 1is parameterized using
optimized hyperparameters determined
through cross-validated search techniques.
4.4 Evaluation Metrics

Model performance is evaluated using:

e Accuracy

e Precision

e Recall

www.ijrt.org

International Journal of Research and Technology Volume 12, Issue 1_ February 2024

e FI-Score

e Area Under the ROC Curve (AUC)
Stratified k-fold cross-validation is used to
ensure robustness.
5. RESULTS AND ANALYSIS
The experimental results indicate that
parameterized machine learning models can
effectively identify
vulnerabilities at early stages.
Random Forest and Gradient Boosting
models outperform linear classifiers,
achieving higher F1-scores and AUC values.
The inclusion of detailed CVSS base metrics
significantly improves model performance

exploit-prone

compared to using overall severity scores
alone. Results further show that attack
vector and attack complexity are among the
most influential predictors, reflecting
attacker preference for remotely exploitable
and low-complexity vulnerabilities.

Despite relying exclusively on static
parameters, the best-performing models
demonstrate strong discriminative ability,
confirming the feasibility of early-stage
exploit prediction.

6. DISCUSSION

The findings of this study highlight the
importance of feature granularity and
model parameterization in vulnerability
exploit prediction. While static features do
not capture attacker behavior directly, they
encode meaningful signals about exploit
feasibility and potential reward. Machine
learning models are able to learn these
signals and generalize across vulnerability
classes.

From a practical perspective, early-stage
exploit prediction can significantly enhance
secure software development lifecycles.
Developers can prioritize code reviews and

27

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

testing efforts for vulnerabilities predicted to
be exploit-prone, while security teams can
allocate patching resources more effectively.
The study also demonstrates that meaningful
security intelligence can be extracted
without relying on external or post-
disclosure data, making the approach
suitable for real-time vulnerability
assessment systems.

7. CONCLUSION

This research has demonstrated that the
early-stage identification of exploit-prone
software vulnerabilities is both feasible and
effective when using parameterized machine
learning models that rely exclusively on
static vulnerability parameters. Contrary to
conventional practices that depend on post-
disclosure indicators such as exploit
availability, attack trends, or temporal
signals, this study confirms that meaningful
predictive intelligence can be extracted at
the moment of vulnerability disclosure. By
utilizing structured information embedded
within CVSS base metrics and disclosure-
time metadata, machine learning models can
infer exploit likelihood with a high degree of
reliability.

The findings clearly show that granular
CVSS base metrics are substantially more
informative than aggregate severity scores
alone. Parameters such as attack vector,
attack complexity, required privileges, and
user interaction play a decisive role in
determining exploit feasibility. These
parameters effectively encode attacker
effort, accessibility, and potential impact—
key factors influencing real-world
exploitation decisions. When processed
through parameterized learning models,
these static attributes collectively enable

www.ijrt.org

International Journal of Research and Technology Volume 12, Issue 1_ February 2024

accurate classification of exploit-prone
vulnerabilities, even in the absence of
exploit code or attacker activity data.

A key contribution of this research lies in its
demonstration that early-stage exploit
prediction supports proactive security
decision-making. Security teams are often
constrained by limited resources and must
prioritize mitigation efforts across thousands
of disclosed vulnerabilities. Early predictive
insights allow organizations to focus on
vulnerabilities with a higher probability of
exploitation, thereby improving the
efficiency of patch management processes.
This approach reduces the risk window
between vulnerability disclosure and
remediation, which is critical in preventing
large-scale security breaches.

From a software engineering perspective,
the results highlight the importance of
integrating exploit prediction mechanisms
into the secure software development
lifecycle (SSDLC). Early identification of
exploit-prone weaknesses enables
developers to prioritize secure coding
practices, targeted code reviews, and
rigorous testing for high-risk components.
This proactive stance enhances overall
software resilience and reduces long-term
maintenance and incident response costs.
The research also demonstrates the practical
applicability of parameterized machine
learning models in real-world environments.
Because the proposed approach relies only
on static features available at disclosure
time, it is well-suited for automation within
vulnerability assessment tools, security
dashboards, and continuous integration
pipelines. Organizations can deploy such
models without relying on external threat

28

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

intelligence feeds or waiting for exploit
confirmation, making early-stage risk
assessment both scalable and cost-effective.
Despite these promising results, the study
acknowledges certain limitations. Static
vulnerability parameters, while informative,
cannot capture evolving attacker behavior,
exploit chaining, or contextual deployment
factors such as asset criticality and exposure.
As such, early-stage predictions should be
viewed as decision-support mechanisms
rather than definitive indicators of
exploitation. Nonetheless, their value in
guiding prioritization and risk mitigation is
substantial.

Future research directions include the
integration of explainable artificial
intelligence (XAI) techniques to improve
transparency and trust in machine learning-
based exploit prediction
Explainable models would allow security
analysts to understand why certain
vulnerabilities are classified as exploit-
prone, facilitating better human—machine
collaboration. ~ Additionally, evaluating
model performance across diverse software
ecosystems, programming languages, and
industrial domains would further strengthen
generalizability. Combining static
parameter-based models with controlled
dynamic signals may also enhance

systems.

prediction accuracy while preserving early-
stage applicability.

This research establishes that parameterized
machine learning models wusing static
vulnerability parameters provide a viable,
practical, and effective solution for early-
stage exploit-prone vulnerability
identification. By enabling timely and
informed security decisions, this approach

www.ijrt.org

International Journal of Research and Technology Volume 12, Issue 1_ February 2024

contributes significantly to improved
vulnerability management, stronger secure
software development practices, and
enhanced organizational cyber resilience.

REFERENCES

1. Allodi, L. and Massacci, F. (2014)
‘Comparing vulnerability severity
and exploitability using CVSS’,
IEEE Security & Privacy, 12(1), pp.
52-60.

2. Arora, A., Telang, R. and Xu, H.
(2008) ‘Optimal policy for software
vulnerability disclosure’,
Management Science, 54(4), pp.
642-656.

3. Bishop, C.M. (2006) Pattern
Recognition and Machine Learning.
Springer.

4. Breiman, L. (2001) ‘Random
forests’, Machine Learning, 45(1),
pp. 5-32.

5. Chowdhury, I. and Zulkernine, M.
(2011) “Using complexity metrics to
predict software vulnerabilities’,
Journal of Systems Architecture,
57(3), pp. 294-313.

6. Feurer, M. and Hutter, F. (2019)

‘Hyperparameter optimization’,
Springer Series on Machine
Learning.

7. Fenton, N. and Neil, M. (1999) ‘A
critique of software defect prediction
models’, IEEE Transactions on
Software Engineering, 25(5), pp.
675-689.

8. Friedman, JH. (2001) ‘Greedy
function approximation: A gradient
boosting machine’, Annals of
Statistics, 29(5), pp. 1189—-1232.

29

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

Hastie, T., Tibshirani, R. and
Friedman, J. (2009) The Elements of
Statistical Learning. Springer.
Houmb, S.H., Franqueira, V.N.L. and
Engum, E.A. (2010) ‘Estimating
software security risk’, Information
and Software Technology, 52(6), pp.
589-599.

Joachims, T. (1998) ‘Text
categorization with support vector
machines’, ECML, pp. 137-142.
Khoshgoftaar, T.M. and Allen, E.B.
(2003) ‘Logistic regression modeling
of software quality’, IJROSE, 10(4),

pp. 435-448.

Li, Y., Tan, K.L. and Li, Z. (2016)
‘Predicting vulnerability
exploitability using machine

learning’, IEEE Software, 33(5), pp.
43-51.

Mell, P., Scarfone, K. and
Romanosky, S. (2007) ‘A complete
guide to the CVSS’, FIRST.
Neuhaus, S. and Zimmermann, T.
(2010) “Security trend analysis with
CVE topic models’, IEEE S&P, pp.
111-125.

Ozment, A. (2007) ‘Improving
vulnerability discovery models’,
ACM CCS, pp. 327-338.

Provost, F. and Fawcett, T. (2013)
Data Science for Business. O’Reilly.
Rescorla, E. (2005) ‘Is finding
security holes a good idea?’, IEEE
Security & Privacy, 3(1), pp. 14-19.
Sabottke, C., Suciu, O. and
Dumitras, T. (2015) ‘Vulnerability
disclosure in the age of social
media’, USENIX Security, pp. 1041—
1056.

www.ijrt.org

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

International Journal of Research and Technology Volume 12, Issue 1_ February 2024

Scikit-learn ~ Developers (2011)
‘Scikit-learn: machine learning in
Python’, JMLR, 12, pp. 2825-2830.
Shin, Y. et al. (2011) ‘Evaluating
complexity, churn, and developer
activity metrics’, I[EEE TSE, 37(6),
pp. 772-787.

Sommer, R. and Paxson, V. (2010)
‘Outside the closed world’, IEEE
S&P, pp. 305-316.

Sutton, R.S. and Barto, A.G. (1998)
Reinforcement Learning. MIT Press.
Tsipenyuk, K., Chess, B. and
McGraw, G. (2005) ‘Seven
pernicious kingdoms’, IEEE Security
& Privacy, 3(6), pp. 81-84.
Verendel, V. (2009) ‘Quantified
security is a weak hypothesis’,
NSPW, pp. 37-49.

Williams, L. and Wierman, M.
(2010) “Security in agile software
development’, IEEE Software, 27(3),
pp. 14-16.

Zhang, H. et al. (2011) ‘Measuring
software security defects using
complexity metrics’, Journal of
Systems and Software, 84(9), pp.
1608-1620.

Zimmermann, T. et al. (2010)
‘Predicting defects using network
analysis’, ICSE, pp. 531-540.

Zou, C.C., Gong, W. and Towsley, D.
(2002) ‘Code red worm propagation
modeling’, ACM CCS, pp. 138-147.
Zulkernine, M. et al. (2010)
‘Predicting vulnerabilities using
software complexity metrics’, OSIC,
IEEE, pp. 23-32.

30

