
ISSN: 2321−7529 (Online) | ISSN: 2321−7510 (Print) International Journal of Research & Technology_May_Volume 06 Issue 02

www.ijrt.org 22

The Optimization Of Snapshot Files While Using The Track Drawing Changes

Functionality In NX

1
P.L.Himabindu and

2
Prof Varshapriya JN

1
Dept of Computer Engineering, VJTI College, Mumbai, India

2
Dept of Computer Engineering, VJTI College, Mumbai, India

 Email: Plhimabindu92@gmail.com and varshapriyajn@vjti.org.in

Abstract— In the current scenario the design of machines is

becoming very complex. So, identifying any changes that are

made during the various revisions of the designing process is very

difficult. To track such changes in drawing the track drawing

changes functionality is developed in NX. This functionality helps

us to compare different part revisions and track basic, reference

and dimension changes with other revisions of same part. While

tracking the drawing changes a snapshot of the file is created. As

these snapshots are huge in size, so it consumes a lot of space on

hard disk to store the data. These snapshots include the part file

data along with the additional metadata such as version,

encoding, modified time and date. So, it is important for this

metadata to be compressed while storing the snapshot as

increased storage space in the system is causing performance

issues. In this paper we will look at the ways in which the

snapshot file can be compressed in track drawing changes

functionality so as to improve the overall performance.

Keywords: Snapshot, QAF, Active drawing

I. INTRODUCTION

The Track Drawing Changes functionality is developed in
NX to save snapshot data, generate comparison reports, and
display change symbols on your drawing. Track drawing
changes will enable user to compare the revisions of the
drawing against the current snapshot of the file or any other
previously saved file. After comparing the files, it will show
the user the changes made in the file and will also provide an
option whether to allow each individual change or to reject the
changes. The snapshot data is used to capture and store key
drafting data for each drawing sheet in the current work part.
This data is used to generate a comparison report of the
differences in the drafting data that results when the part is
changed or updated.

In order to perform the track drawing changes functionality a
snapshot of the file is saved in the system. This snapshot
includes the drawing along with some additional headers such
as last modified time, encoding, path etc. As these snapshots
are sometimes in GBs in size, so it consumes a lot of space on
hard disk to store the data. Hence, it is important for this data to
be compressed while storing the snapshot. Compressing the
data is essential because of the amount of data that is generated
and also to improve the performance efficiency.

II. TRACK DRAWING CHANGE FUNCTIONALITY

The Track Drawing Changes tool in NX Drafting allows
user to quickly and easily compare revisions of a drawing to
see exactly what changes have been made. Track Drawing

Changes is a tool user use to compare an active drawing
against a previously saved snap shot of the drawing. The
compare function provides the capability to see and document
what has changed since the snapshot was last saved, usually
when the part was last saved. The Track Drawing Changes
command tracks many drafting objects including sheets, views,
dimensions, annotations, symbols, centerlines, tables, and
drafting sketch curves.

The workflow for using this command would be that a user
opens a drawing file as a baseline to compare and then the user
selects this command from Track Drawing Changes toolbar. If
the snapshot data already exists then the comparison report can
be generated directly. In case the snapshot does not exist for
the part file then an option is given to the user whether to create
a snapshot or not. If user selects yes, then the system will
create the snapshot (Key Point Information) data and then the
comparison is done. If user selects no, then again, the „Drawing
Compare‟ dialog will open to let user select another part file.

The track drawing changes command provides two options
using which this functionality can be performed. The first
option is to compare against a saved snapshot, this option
compares the current drawing against snapshot data captured of
the same drawing. This method allows the user to determine
when to save data. The Track Drawing Changes report
function will then compare the current state of the part with the
saved snapshot. This method is best used when comparing a
previous saved version of the part to a current version. Another
method is to compare against the last drawing file update. This
method saves a temporary snapshot of the data between
executions of the drawing compare report. The idea behind the
latter method is to track changes while working on the
drawing.

In this, we have provided functionality where user can
create snapshot of drawing where we capture important
information of annotation. This snapshot file is stored in a
hierarchy of structured storages and streams. The information
captured in a snapshot includes actual data and some additional
overheads. The overheads involved include details such as
creation time, encoding, location etc. These overheads
sometime increase the file size drastically and cause
performance issues. Once the snapshot data is created it is then
converted to XML and finally saved in QAF folder. So now
based on part file, XML size of snapshot stored in QAF may
sometimes increase by around 50%. To overcome this, we will
be using compression API which would drastically reduce the
QAF size.

ISSN: 2321−7529 (Online) | ISSN: 2321−7510 (Print) International Journal of Research & Technology_May_Volume 06 Issue 02

www.ijrt.org 23

III. SNAPSHOT DATA

A snapshot is a point in time information of the data that is
captured for comparison. Data that will be captured includes all
notes, labels, symbols and dimensions. When you create the
snapshot data, it is saved with the part's permanent data. Only
one snapshot is saved with a part. The snapshot can be
captured in different scenarios depending upon the mode the
user is working on. There are different modes such as on
demand mode and on save mode. In the on-demand mode,
users will create a snapshot when they want. At any time later,
they can create a report that will compare the current state of
the drawing or part with the snapshot taken on demand. During
the on save mode, users may want to compare different
versions of the part. The user will open up the part in a new
release and run the report. The report will compare the current
state of the drawing or part with the snapshot taken when the
part was last saved. In this manner, changes that may have
occurred as a result of versioning up may be detected. Or the
user may run the report right after updating the freshly opened
part to see if update causes differences during the two versions.
Lastly, the user may want to run the report after the days‟ work
to see what differences have occurred between when the part
was last saved and before he saves it. Of course, if the user
created a snapshot during the session, it will overwrite the
snapshot created when the part was last saved and thus the part
will no longer have a snapshot to do version up comparison.

IV. QAF FOLDER

QAF stands for Quick Access Folder, so whenever a part is
saved it is stored in the QAF folder. The QAF folder includes
the data of the saved part along with the metadata. The part file
is stored in QAF folder in binary format whereas the metadata
is stored in XML format. The metadata is generated while
saving the snapshot increasing the file size. Here the metadata
includes fields such as version, encoding, location, creation
time etc. This additional metadata added to the saved part file
sometimes increases the overall file size by around 50% and
hence causing the performance issues.

Fig. 1: QAF Folder Data

Figure 1 shows how the snapshot data is stored in the QAF
folder. The data stored in the binary format on the left is the

actual part file data whereas the meta data is stored on the right
in the form of XML tags. The data present in the form of tags
is the additional data that is stored while saving the snapshot.

V. WORKING OF TDC FUNCTIONALITY

Track drawing changes functionality allows user to compare

current part with other revisions of same part. This helps us to

improve product quality and user productivity by identifying

the differences in the drawing. Any mismatch or changes in the

drawing from the previous saved file can be easily identified.

This helps us to easily identify the difference or any new

enhancements in the drawing.

In this functionality, the user can select any part for

comparison. Once part is selected based on user inputs, system

will either read the snapshot data from QAF folder of selected

part without opening part or open selected part to create

snapshot in case it is not available. Once the actual part and the

snapshot data are available then the comparison report is

generated. When a comparison report is run, the results are

displayed in an interactive dialog box. This report includes

details of all the data that has been added, deleted or modified

from the previously saved file. We can also view basic or

detailed data, to visually identify and understand individual

changes, additions, or deletions. The report generated helps us

to track the new properties, highlight change symbols and

navigate to symbols if any of the entity is deleted. The report

generated also provides a chance for the user to determine

whether to keep those changes or discard them. And once the

change has been reviewed the state can be marked on the

drawing.

Fig. 2: Comparison Method

ISSN: 2321−7529 (Online) | ISSN: 2321−7510 (Print) International Journal of Research & Technology_May_Volume 06 Issue 02

www.ijrt.org 24

VI. OPTIMISATION OF SNAPSHOT FILE

Snapshot files are stored in binary and xml file format. The
binary data is the actual part file that is stored which contains
the information about the drawing and the xml data is the
metadata that is added while saving the snapshot. As a part of
optimization, the binary data in file will be kept same and the
xml part of the file will be compressed. Here the XML part of
the file will be compressed for data storage optimization.
Different compression levels can be set by compromising
between speed and compression. The compression levels can
vary from 0 to 9. As the compression level goes up the time
taken to compress also increases with the higher levels of
compression being from 7 to 9. Depending upon the
compression level there is a tradeoff between the compression
ratio and performance. Here level one represents the fastest
performance and level nine represents the best compression
ratio. Most

VII. ALGORITHM FOR COMPRESSION

1. Initially check if part file name is given or not.

2. Then open QAF, if it does not exist then it is created

else existing contents will be cleared before writing.

3. Initialize the dataset to NULL for fields such as

avail_in, avail_out, next_in and next_out.

4. Prepare compression stream for output and post error

message on failure

a) Obtain data length for compression i.e.,

length of uncompressed data + checksum

length.

b) Allocate memory to the length of

compression stream using calloc function.

c) Now call deflateInit function to initialize the

internal stream state for compression.

d) If deflateInit function returns an error then

the compression stream cannot be setup.

5. Now we can start to compress the data block using

deflate function

6. Do

a) Compress until eof (avail_in>0)

b) If deflate returns error value then

compression failed.

c) Else compression completed successfully

7. Now add checksum at the end of compression stream

to ensure the integrity of the uncompressed data after

decoding.

8. After the compression is finished the deflate function

returns a compression value.

If (value==Z_STREAM_END)

 The input is successfully flushed

Else

 Failed attempt to compress data.

9. The compression stream is flushed by setting the

values of compressed data to NULL and data bytes to

0 and also freeing the memory assigned to

compressed data.

10. Then dynamically allocated data used by

compression stream is cleaned up.

11. The compressed data is then written into the QAF

folder successfully.

Fig. 3: Compressed QAF Data

Figure 3 shows how the XML data is compressed and is
available in the QAF folder. As the size of additional metadata
is very large increasing the overall size of the part file so,
compression ensures that the size of part files is reduced and
thus the storage requirements. Reducing the file size also helps
us to open the file more quickly and improving the overall
performance.

TABLE I. PART SIZE REDUCTION

Sr

No.
Compression Data Fields

Sr.No. Part Name

Uncompre

ssed

snapshot

data size

in KB

Uncompres

sed

snapshot

data size in

KB

% reduction

in snapshot

size with

compression

1

NX755_2D_Centerl
ine_HVP_001_dwg

_001

6775

611

90.981

2

56000000135093_k

2_s_560000001350

93_dr01

450

48

89.333

3
PR2217223_0302A
AU00480N_006_1

5615

820

85.396

ISSN: 2321−7529 (Online) | ISSN: 2321−7510 (Print) International Journal of Research & Technology_May_Volume 06 Issue 02

www.ijrt.org 25

The table 1 shows the percentage reduction in the snapshot size
after the compression algorithm is applied on the data file. For
part NX755_2D_Centerline_HVP_001_dwg_001 the
uncompressed snapshot file size is 6775KB after the
compression algorithm is applied the file size is reduced to
611KB. The percentage reduction in the snapshot file can be
given as 90.981% which is very high and can improve a lot of
performance.

VIII. CONCLUSION

Implementation of this method allows snapshot data to be
stored in a compressed format in the system and also enables
the track drawing changes functionality to be more efficiently
by the customer. This will also help in identifying the
differences in the drawing and also report any issues at the
earlier stage. Also optimizing the data that is generated during
track drawing changes will help to improve the storage that is
used for this functionality. Optimization of the data is essential

because of the amount of data that is generated and also to
improve the performance efficiency.

IX. REFERENCES

[1] P.Yellamma and Dr.Narasimham Challa, “Performance Analysis of

Different Data Compression Techniques,” International Journal of
Engineering Research & Technology. Vol. 1, October 2012

[2] https://community.plm.automation.siemens.com/t5/NX-Design-
Knowledge-Base/Compare-Drawing-Revisions-Pt-1-Track-Drawing-

Changes-in-NX-11/ta-p/403323.

[3] https://github.com/jtkukunas/zlib.

[4] DEFLATE Compressed Data Format Specification - RFC1951:

http://www.faqs.org/rfcs/rfc1951.html

[5] James T Kukunas and Vinodh Gopal, “High Performance ZLIB

Compression,” White Paper, April 2014

