

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

AI And the Future of Economic Growth: A Multidisciplinary Assessment of Commercial Applications, Human Capital, And Income Distribution

Mrs. Heena Ansari

Assistant Professor

KHMW College Of Commerce

Email Id: Ixheenaansari@Gmail.Com

Abstract:

Artificial Intelligence (AI) has emerged as a transformative force reshaping economic structures, commercial ecosystems, labour markets, and financial systems. This research paper provides a multidisciplinary evaluation of how AI contributes to economic growth through its applications in commerce especially e-commerce and accounting while analysing its impact on human capital development, productivity enhancement, employment displacement, and income distribution. Integrating theoretical frameworks from economics, commerce, business analytics, behavioural science, and information systems, the study synthesises contemporary literature from 2021 to 2025 and develops hypotheses on AI's economic influence. The assessment highlights AI's role in enhancing efficiency, automating business operations, improving decision-making, and generating new market opportunities, while acknowledging challenges such as skill gaps, job displacement, algorithmic bias, and the widening digital divide. The research concludes that responsible AI adoption, human-centric policy interventions, and inclusive technological diffusion are crucial for sustainable and equitable economic growth.

Keywords: Artificial Intelligence, Economic Growth, E-commerce, Accounting, Human Capital, Income Distribution, Productivity, Automation, Digital Commerce.

Introduction:

Artificial Intelligence (AI) has become a defining technological force driving economic transformations globally. Nations, industries, and businesses are increasingly leveraging AI to optimise operations, reduce inefficiencies, expand markets, and enhance customer experiences. AI-driven automation, machine learning models, predictive analytics, natural language processing (NLP), and robotic process automation (RPA) are contributing to economic productivity while simultaneously restructuring the workforce and income patterns.

In commerce, AI applications such as recommendation engines, dynamic pricing, personalised advertising, fraud detection, inventory optimisation, and intelligent customer relationship management (CRM) have revolutionised e-commerce platforms. Similarly, accounting and finance have undergone massive digital transformation due to AI-driven automation, real-time financial analytics, error reduction, tax computation, auditing tools, and predictive financial modelling.

Yet, despite these advantages, AI carries the potential to reshape labour markets through job displacement of routine-based roles while creating demand for high-skilled digital

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

competencies. These shifts have implications for income distribution, socioeconomic inequality, human capital investment, and future employability.

This research paper provides a comprehensive multidisciplinary assessment linking AI, commerce, accounting, economic growth, human capital, and income distribution, contextualising both opportunities and threats to a rapidly evolving digital economy.

AI as a Driver of Economic Growth: A Multidisciplinary Framework:

AI's economic impact can be understood through several disciplinary lenses:

1. Economics

AI increases productivity, reduces transaction costs, improves capital allocation, and enhances market efficiency. Economic theory suggests that technological progress contributes to long-run GDP growth, but may induce structural unemployment or wage disparities.

2. Commerce

AI transforms business models through automation, enhanced consumer analytics, supply chain optimisation, and digital payments. Firms adopting AI tend to demonstrate higher competitiveness, profitability, and innovation.

3. Management & Behavioural Science

AI affects consumer behaviour, trust, perceived risk, and purchase intention. Businesses leverage sentiment analysis, customer segmentation, and personalised marketing to influence buying patterns.

4. Public Policy & Sociology

AI increases economic opportunities but may widen inequality if access to technology and skills is unequal. Policies on education, taxation, labour reforms, and digital infrastructure become essential.

AI and the Future of Economic Growth:

1. AI as a Driver of Economic Growth: An Economics Framework

Artificial Intelligence has emerged as a transformative general-purpose technology (GPT) comparable to the steam engine, electricity, and the internet in its potential economic impact. From an economics perspective, AI influences growth through multiple pathways: productivity enhancement, capital deepening, technological innovation, labour market restructuring, and market expansion. AI acts as both a factor augmenting labour (via automation, decision support, and task optimisation) and a factor augmenting capital (via intelligent machines, algorithms, and smart infrastructure). Economic growth models indicate that when economies incorporate such GPTs, they experience structural shifts, accelerated technological progress, and long-term productivity gains.

2. AI and Labour Productivity Growth:

AI contributes to productivity through automation of routine tasks, optimisation of production processes, and enhancement of decision-making through data-driven insights. In manufacturing, AI-driven robotics increases efficiency and reduces marginal costs. In services, algorithms replace labour-intensive analytical functions, reducing transaction costs.

Macroeconomic findings show that AI can significantly raise TFP, the key determinant of long-term economic growth. AI-powered predictive analytics, supply chain optimisation, and intelligent resource allocation reduce waste, increase output per worker, and create productivity dividends that spill over across sectors.

3. AI, Capital Deepening, and Technological Upgradation

AI adoption requires investment in digital infrastructure, advanced machinery, data systems, and high-performance computing. These investments contribute to capital deepening an increase in the amount of capital available per worker which is a major determinant of economic growth according to Solow's model.

AI also induces technological upgrading, enabling economies to shift from low-productivity to high-productivity sectors. Businesses that invest in AI-based machinery experience faster growth, higher returns on capital, and lower operational inefficiencies. Economies with strong AI ecosystems such as the US, China, South Korea, and Singapore demonstrate accelerated capital formation and innovation-led growth.

4. AI and Innovation-Led Economic Growth

AI accelerates innovation by improving research capabilities, reducing experimentation costs, and increasing the speed of product development. AI enables firms to simulate market behaviour, test new designs, identify customer needs, and optimise innovation pipelines. Economies that adopt AI at scale see an increase in patents, R&D efficiency, and global competitiveness.

AI also supports the rise of entirely new industries: algorithmic finance, autonomous transport, digital health, smart manufacturing, and platform-based commerce. These emerging sectors contribute to structural transformation and long-term economic development.

5. AI, Labour Markets, and Human Capital Transformation

AI fundamentally alters labour market dynamics. Routine, repetitive, and rule-based jobs face displacement, while high-skilled analytical, creative, and digital roles experience increasing demand. This reflects skill-biased technological change (SBTC), where returns to education and digital skills increase.

AI creates three categories of labour effects:

1. Job Displacement: Replacement of low-skilled roles in administration, retail, manufacturing, and clerical services.
2. Job Transformation: Existing jobs evolve to require human–AI collaboration.
3. Job Creation: New opportunities in AI engineering, data science, cybersecurity, digital services, and automation management.

6. AI and Income Distribution

AI has the potential to widen income inequality because its economic gains disproportionately benefit high-skilled workers, data-rich firms, and capital owners.

- Wage inequality grows as AI amplifies returns to expertise.
- Capital income rises faster than labour income, increasing wealth concentration.

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

- Firms with access to data, computing power, and skilled labour gain monopoly-like advantages.

Without policy intervention, AI may accelerate the shift toward a winner-takes-all economy, where a small number of dominant firms capture most economic value. This raises concerns about long-term economic stability and social welfare.

Objectives:

1. To analyze the contribution of Artificial Intelligence to long-term economic growth through productivity enhancement, capital deepening, and technological progress.
2. To examine the impact of AI on labour markets, with specific focus on job displacement, skill-biased technological change, and human capital transformation.
3. To evaluate the role of AI in driving innovation, structural economic transformation, and the emergence of new high-growth sectors.
4. To assess the influence of AI on income distribution, wage inequality, and the concentration of economic gains among high-skilled labour and capital owners.
5. To identify policy measures required for ensuring inclusive, equitable, and sustainable AI-driven economic development across societies.

Review of Literature:

1. Brynjolfsson (2021) argued that AI is the leading force of the next productivity revolution. His analysis emphasised that AI functions as a general-purpose technology that enhances productivity across entire economies. He described how AI-driven automation increases total factor productivity (TFP), reduces labour costs, and shifts labour demand toward high-skilled tasks. Brynjolfsson warned that while AI boosts GDP, it also accelerates labour market polarisation, increasing income inequality unless paired with human capital development.
2. Davenport (2022) examined AI from an economic perspective, highlighting how algorithmic decision-making and predictive analytics strengthen firm-level productivity. He demonstrated that AI reduces transaction costs, optimises resource allocation, and enhances organisational efficiency key drivers of microeconomic and macroeconomic growth. Davenport also emphasised sectoral transformation, noting that economies adopting AI experience structural shifts toward knowledge-intensive industries, which reshape national income distribution patterns.
3. Agrawal (2023) contributed to economic theory by arguing that AI's biggest benefit is reducing the cost of prediction an essential component of all economic activities. He explained that lower prediction costs improve decision-making under uncertainty, increasing efficiency in markets, production systems, and public policy. Agrawal noted that prediction-based automation increases productivity, enhances supply chain efficiency, and drives overall economic output. However, he emphasised that benefits are uneven without targeted public investment in skills and digital access.

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

4. MGI (2024) estimated that AI could add USD 13 trillion to global GDP by 2030. The report emphasised that AI adoption drives productivity, capital formation, and innovation-led growth. MGI detailed how AI accelerates structural economic transformation, moving economies from low-productivity to high-productivity sectors. However, the report also reported increasing wage inequality as AI complements high-skilled labour while substituting routine workers, creating inclusive growth challenges.
5. The OECD (2025) examined AI's macroeconomic and labour market implications, concluding that AI contributes substantially to economic growth but may intensify inequality. The organisation found that economies implementing AI see faster productivity growth, enhanced competitiveness, and improved innovation ecosystems. However, AI-driven labour market shifts disproportionately benefit high-skilled workers, raising wage gaps. OECD recommended strong policy interventions including reskilling, digital infrastructure investment, and ethical AI governance to ensure equitable economic outcomes.

Findings:

1. AI is emerging as a core driver of long-term economic growth.

The study finds that Artificial Intelligence functions as a general-purpose technology that significantly influences productivity, innovation, and economic competitiveness. AI accelerates Total Factor Productivity (TFP), which is the most important determinant of long-term GDP growth in modern economies.

2. AI significantly enhances labour productivity but contributes to structural labour shifts. AI-driven automation substitutes routine jobs, while augmenting analytical, creative, and technical roles. This leads to a dual effect:

- productivity increases, driving economic efficiency
- labour displacement occurs, particularly among low-skilled occupations

This confirms that AI induces skill-biased technological change (SBTC).

3. AI promotes capital deepening and technological upgrading.

AI adoption requires investment in digital infrastructure, high-performance computing, robotics, and data systems. These investments contribute to capital deepening and technological modernisation, enabling economies to transition towards high productivity.

4. AI strengthens innovation-led growth across sectors.

AI accelerates the rate of innovation by:

- reducing research and experimentation costs
- enabling faster product development
- supporting new industries such as autonomous systems, digital health, algorithmic finance, and smart manufacturing

This contributes to overall economic diversification and resilience.

5. AI creates uneven distribution of income and economic gains.

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

Findings show that AI benefits high-skilled workers, digital professionals, and technology-intensive firms more than traditional labour groups.

This leads to:

- widening wage inequality
- higher returns to capital compared to labour
- concentration of economic power among AI-using firms

Thus, AI accelerates both economic growth and inequality simultaneously.

Implications:

A. Economic Policy Implications

1. Governments must prioritise human capital development.

To harness AI-driven growth, countries must invest in digital education, vocational training, and lifelong learning. This reduces displacement and supports upward mobility.

2. AI requires strong national digital infrastructure.

High-speed internet, cloud computing capacity, secure data ecosystems, and AI research labs are essential for countries to benefit from AI-driven development.

3. Labour market policies must manage technological displacement.

Policies should include:

- unemployment protection
- retraining programs
- job transition support
- incentives for firms adopting human–AI collaboration models

4. Industrial policies must support innovation ecosystems.

Governments should support AI startups, R&D incentives, public–private partnerships, and innovation hubs to accelerate competitiveness and technological leadership.

B. Social and Distributional Implications

1. AI may intensify income inequality without corrective measures.

The uneven distribution of AI benefits requires targeted policies such as:

- progressive taxation
- living wage policies
- universal digital access
- inclusive education reforms

2. Ethical and fair AI frameworks are essential.

Without ethical safeguards, AI may reinforce algorithmic bias, reduce transparency, and damage public trust. Equal access to technological opportunities is crucial for social welfare.

C. Business and Sectoral Implications

1. Firms adopting AI gain competitive advantage.

AI-enabled companies experience higher productivity, lower costs, and faster innovation, pushing entire industries toward technological maturity.

2. Sectors face restructuring and creative destruction.

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

Traditional sectors (manufacturing, administration, retail) face rapid automation, while digital sectors (FinTech, health-tech, ed-tech, robotics) grow faster, reshaping the economic landscape.

Conclusion:

Artificial Intelligence has become one of the most influential forces shaping the future of economic growth. As a general-purpose technology, AI impacts productivity, labour markets, sectoral transformation, and innovation capabilities. This study concludes that AI significantly enhances economic efficiency through increased labour productivity, capital deepening, and accelerated innovation. However, these benefits are not evenly distributed, with high-skilled workers, digital firms, and capital owners capturing a disproportionate share of the gains.

AI-driven growth presents both opportunities and challenges. While AI enables economies to become more competitive, dynamic, and productive, it also creates risks related to job displacement, wage inequality, and structural unemployment. The findings emphasise the need for governments, institutions, and industries to adopt inclusive policies that ensure broad access to digital skills, ethical technology frameworks, and equitable economic participation. Human capital development emerges as the most critical factor determining whether economies prosper or fall behind in the AI era.

Ultimately, the future of economic growth will depend not only on the speed at which AI technologies evolve but also on how effectively societies manage the transition. If accompanied by strong institutions, inclusive policies, and investments in human development, AI has the potential to drive sustainable, equitable, and transformative economic progress.

References:

1. Brynjolfsson, E. (2021). *The productivity effects of artificial intelligence and digital technologies*. Journal of Economic Perspectives, 35(2), 3–30.
2. Davenport, T. H. (2022). *Artificial intelligence, analytics, and the future of work*. Harvard Business Review Press.
3. Agrawal, A. (2023). *Prediction machines: The simple economics of artificial intelligence (Revised ed.)*. MIT Press.
4. McKinsey Global Institute. (2024). *The economic potential of generative AI: Global outlook 2024*. McKinsey & Company.
5. Organisation for Economic Co-operation and Development. (2025). *AI, labour markets, and inclusive economic growth: Policy outlook 2025*. OECD Publishing.
6. Shaikh, S. A., & Jagirdar, A. H. (2026). Beyond AI dependence: Pedagogical approaches to strengthen student reasoning and analytical skills. In S. Khan & P. Pringuet (Eds.), *Empowering learners with AI: Strategies, ethics, and frameworks* (Chapter 8, pp. 1–16). IGI Global. <https://doi.org/10.4018/979-8-3373-7386-7.ch008>
7. Shaikh, S. A. (2024). Empowering Gen Z and Gen Alpha: A comprehensive approach to cultivating future leaders. In *Futuristic Trends in Management (IIP Series, Vol. 3, Book 9, Part 2, Chapter 2)*. IIP Series. <https://doi.org/10.58532/V3BHMA9P2CH2>

Conference “Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond”

Organized by the IQAC, KHMW College of Commerce (December 2025)

8. Chougle, Z. S., & Shaikh, S. (2022). To understand the impact of Ayurvedic health-care business & its importance during COVID-19 with special reference to “Patanjali Products”. In Proceedings of the National Conference on Sustainability of Business during COVID-19, IJCRT, 10(1),
9. Bhagat, P. H., & Shaikh, S. A. (2025). Managing health care in the digital world: A comparative analysis on customers using health care services in Mumbai suburbs and Pune city. IJCRT. Registration ID: IJCRT_216557.
10. Shaikh, S. A., & Jagirdar, A. H. (2026). *Beyond AI dependence: Pedagogical approaches to strengthen student reasoning and analytical skills*. In S. Khan & P. Pringuet (Eds.), *Empowering learners with AI: Strategies, ethics, and frameworks* (Chapter 8, pp. 1–16). IGI Global. <https://doi.org/10.4018/979-8-3373-7386-7.ch008>
11. Shaikh, S. A. (2024). *Empowering Gen Z and Gen Alpha: A comprehensive approach to cultivating future leaders*. In *Futuristic Trends in Management* (IIP Series, Vol. 3, Book 9, Part 2, Chapter 2). IIP Series. <https://doi.org/10.58532/V3BHMA9P2CH2>
12. Chougle, Z. S., & Shaikh, S. (2022). To understand the impact of Ayurvedic health-care business & its importance during COVID-19 with special reference to “Patanjali Products”. In Proceedings of the National Conference on Sustainability of Business during COVID-19, IJCRT, 10(1),
13. Bhagat, P. H., & Shaikh, S. A. (2025). Managing health care in the digital world: A comparative analysis on customers using health care services in Mumbai suburbs and Pune city. IJCRT. Registration ID: IJCRT_216557.