Simulation Of A LTE Downlink Physical Layer Using MATLAB

Dhruva Poduval, Tejas Garle, Nitin Gaikwad, Amar Kalburgi, Smita Chopde F.C.R.I.T, Department of Electronics and Telecommunication, Vashi-400703, India

Abstract— Long-term evolution (LTE) represents an emerging and promising technology for providing broadband ubiquitous Internet access. In order to evaluate the performance of new mobile network technologies, system level simulations are crucial. For this reason, several research groups are trying to optimize its performance. In this paper, we introduce a Matlab based LTE downlink physical-layer simulator according to 3GPP specifications (Release 10) and other related proposals. The simulation is carried out for the single downlink, from one E-UTRAN (eNodeB) to one User Equipment (UE). Analysis of Bit Error Rate has been done for this system under different system settings.

Keywords—LTE; 4G; 3GPP; MIMO; OFDM

I. INTRODUCTION

The Long Term Evolution (LTE) standard, specified by the 3rd Generation Partnership Project (3GPP) in Release 8, defines the next evolutionary step in 3G technology [1]. LTE offers significant improvements over previous technologies such as Universal Mobile Telecommunications System (UMTS) and High-Speed Packet Access (HSPA) by introducing a novel physical layer and reforming the core network. The main reasons for these changes in the Radio Access Network system design are the need to provide higher spectral efficiency, lower delay, and more multi-user flexibility than the currently deployed networks. In the development and standardization of LTE, as well as the implementation process of equipment manufacturers, simulations are necessary to test and optimize algorithms and procedures. This has to be performed on both, the physical layer (link-level) and in the network (system-level) context [2].

LTE is based mainly on three technologies, Turbo Coding which is used as the primary error detection and correction mechanism, Orthogonal Frequency Division Multiple Access (OFDMA) is used as the downlink scheduling scheme and OFDM along with Multiple Input and Multiple Output (MIMO) antennas are used to give enhanced data rates. These various aspects have been included in our Matlab based simulator for the physical layer of a LTE system to check its performance parameters.

II. SIMULATOR OVERVIEW

This section presents the scope of the paper and also describes in detail the structure of the simulator along with the requirements and some constraints on the implementation of the LTE system.

The implementation is based on LTE release 10 of the 3GPP specification. And the platform used is Matlab.

In the simulation data transmission between only one eNodeB and one user equipment is considered. The focus mainly being on the Physical Downlink Layer. Only PDSCH (Physical Downlink Shared Channels) are considered, control channels have not been considered. Only FDD(Frequency Division Duplex) is considered [3]. Thus this simulation mainly focuses on implementing the transmitter and receiver of a LTE system. The simulation is currently based on Matlab files and we plan to move this to a simulink work in the future. The implementation using Matlab helps understand and improve the algorithms employed at different areas of the system.

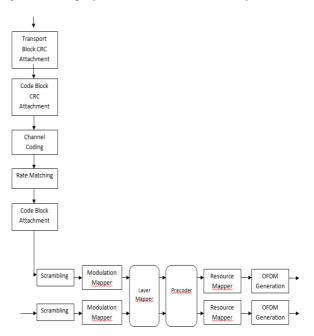


Fig 1 Physical Layer block Diagram

www.ijrt.org 148

Fig 1 represents a block wise representation of the various

International Journal of Research & Technology, Volume 2, Issue 1

steps involved in an LTE physical layer. The LTE PHY specification is designed to accommodate bandwidths from 1.25 MHz to 20 MHz. OFDM was selected as the basic modulation scheme because of its robustness in the presence of severe multipath fading. Downlink multiplexing is accomplished via OFDMA. Firstly the input data sequence is scrambled and then undergoes channel encoding. Here the bit sequence is encoded using turbo encoder and then it is interleaved. All of this is done as per 3GPP Release 10 specifications. This data is then modulated according to a scheme which is most suitable for the current channel response. This mapping is done in the modulation mapper and the various schemes used are QPSK, QAM and MSK. Once done the data is divided into orthogonal carriers for OFDM transmission and the MIMO antennas are used to transmit this bit stream. MIMO combined with OFDM allows the LTE system to achieve a much greater transmission rate and robustness as compared to any other mobile communication technique.

A. Transmitter

The first section of transmission involves channel coding, multiplexing and interleaving [1].

The CRC code is generated using the generator polynomial,

$$g_{crc}(D) = D^{24} + D^{23} + D^{18} + D^{17} + D^{14} + D^{11} + D^{10} + D^{7} + D^{6} + D^{5} + D^{4} + D^{3} + D + 1$$
(1)

After CRC bits are added to the incoming bit stream the data undergoes channel coding. A turbo code as per 3GPP specifications has been used [4][5]. Turbo codes are parallel concatenated convolutional codes. The generator sequence is represented by the equation,

$$G(D) = \left[1, \frac{g_1(D)}{g_0(D)}\right] \tag{2}$$

Where,

$$g_0(D) = 1 + D^2 + D^3$$
 (3)

$$g_1(D) = 1 + D + D^3 (4)$$

The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when starting to encode the input bits. The turbo code inter leaver is used to interleave the coded data to add further resilience to the system. The bits input to the turbo code internal inter leaver are denoted by $c_0, c_{1,\dots,c_{k-1}}$, where K is the number of input bits. The bits output from the turbo code internal inter leaver are denoted as $c'_0, c'_1, \dots, c'_{k-1}$.

The relationship between the input and output bits is as follows:

$$c'_{i} = c_{\pi(i)}, i=0, 1, ..., k-1$$
 (5)

The parameters f_1 and f_2 depend on the block size K and are summarized in Table 1.

i	Ki	f_1	f_2	i	Ki	f_1	f_2	i	Ki	f_1	f_2	i	Ki	f_1	f_2
1	40	3	10	48	416	25	52	95	1120	67	140	142	3200	111	240
2	48	7	12	49	424	51	106	96	1152	35	72	143	3264	443	204
3	56	19	42	50	432	47	72	97	1184	19	74	144	3328	51	104
4	64	7	16	51	440	91	110	98	1216	39	76	145	3392	51	212
5	72	7	18	52	448	29	168	99	1248	19	78	146	3456	451	192
6	80	11	20	53	456	29	114	100	1280	199	240	147	3520	257	220
7	88	5	22	54	464	247	58	101	1312	21	82	148	3584	57	336
8	96	11	24	55	472	29	118	102	1344	211	252	149	3648	313	228
9	104	7	26	56	480	89	180	103	1376	21	86	150	3712	271	232
10	112	41	84	57	488	91	122	104	1408	43	88	151	3776	179	236
11	120	103	90	58	496	157	62	105	1440	149	60	152	3840	331	120
12	128	15	32	59	504	55	84	106	1472	45	92	153	3904	363	244
13	136	9	34	60	512	31	64	107	1504	49	846	154	3968	375	248
14	144	17	108	61	528	17	66	108	1536	71	48	155	4032	127	168
15	152	9	38	62	544	35	68	109	1568	13	28	156	4096	31	64
16	160	21	120	63	560	227	420	110	1600	17	80	157	4160	33	130
17	168	101	84	64	576	65	96	111	1632	25	102	158	4224	43	264
18	176	21	44	65	592	19	74	112	1664	183	104	159	4288	33	134
19	184	57	46	66	608	37	76	113	1696	55	954	160	4352	477	408
20	192	23	48	67	624	41	234	114	1728	127	96	161	4416	35	138
21	200	13	50	68	640	39	80	115	1760	27	110	162	4480	233	280
22	208	27	52	69	656	185	82	116	1792	29	112	163	4544	357	142
23 24	216 224	11 27	36 56	70 71	672	43 21	252	117	1824	29	114	164 165	4608	337 37	480
25	232	85	58	72	688 704	155	86 44	118	1856 1888	57 45	116 354	166	4672 4736	71	146 444
26	240	29	60	73	720	79	120	120	1920	31	120	167	4800	71	120
27	248	33	62	74	736	139	92	121	1952	59	610	168	4864	37	152
28	256	15	32	75	752	23	94	122	1984	185	124	169	4928	39	462
29	264	17	198	76	768	217	48	123	2016	113	420	170	4992	127	234
30	272	33	68	77	784	25	98	124	2048	31	64	171	5056	39	158
31	280	103	210	78	800	17	80	125	2112	17	66	172	5120	39	80
32	288	19	36	79	816	127	102	126	2176	171	136	173	5184	31	96
33	296	19	74	80	832	25	52	127	2240	209	420	174	5248	113	902
34	304	37	76	81	848	239	106	128	2304	253	216	175	5312	41	166
35	312	19	78	82	864	17	48	129	2368	367	444	176	5376	251	336
36	320	21	120	83	880	137	110	130	2432	265	456	177	5440	43	170
37	328	21	82	84	896	215	112	131	2496	181	468	178	5504	21	86
38	336	115	84	85	912	29	114	132	2560	39	80	179	5568	43	174
39	344	193	86	86	928	15	58	133	2624	27	164	180	5632	45	176
40	352	21	44	87	944	147	118	134	2688	127	504	181	5696	45	178
41	360	133	90	88	960	29	60	135	2752	143	172	182	5760	161	120
42	368	81	46	89	976	59	122	136	2816	43	88	183	5824	89	182
43	376	45	94	90	992	65	124	137	2880	29	300	184	5888	323	184
44	384	23	48	91	1008	55	84	138	2944	45	92	185	5952	47	186
45	392	243	98	92	1024	31	64	139	3008	157	188	186	6016	23	94
46	400	151	40	93	1056	17	66	140	3072	47	96	187	6080	47	190
47	408	155	102	94	1088	171	204	141	3136	13	28	188	6144	263	480

Table 1

Depending on the channel conditions, QPSK, 16-QAM and 64-QAM modulation schemes are then used to modulate the signal. This signal is multiplexed using OFDM. A 2 X 2 MIMO antenna has been modeled for Transmission and reception [6].

www.ijrt.org

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print)

B. Channel

An AWGN (Additive White Gaussian Noise) channel has been considered in the simulation.

C. Receiver

The UE receives the signal transmitted by the eNodeB and performs the reverse physical layer processing of the transmitter. The demodulation and soft decision decoding of the OFDM signal takes place [7]. The obtained output is then checked for error. The BER (Bit Error Rate) of the signal for varying values of Eb/N0 is calculated so as to estimate the performance of the system.

III. IMPLEMENTATION STATUS

Currently the simulation of the signal processing aspects of the physical downlink layer between one user equipment and a eNodeB has been completed with the above mentioned constraints. Desired levels of BER have been observed, demonstrating the robustness of a LTE system.

IV. RESULTS

The BER results for a LTE system was obtained as shown below in figure 2.

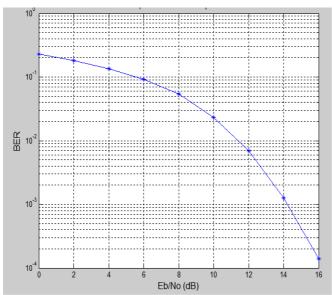


Figure 2: Results

By using a 4 X 2 or 4 x 4 MIMO antenna configuration and/or a more robust modulation scheme it is possible to further improve the performance of the system in terms of BER and

International Journal of Research & Technology, Volume 2, Issue 1 ultimately the throughput while also saving on the transmission s bandwidth.

ACKNOWLEDGMENT

We would like to thank our internal guide Mrs. Chopde Smita for her guidance along every step of the implementation and documentation of this project. We also thank Dr. Milind Shah our project evaluator for constructive criticism on the implementation of the project. Finally, we are indebted to all the respected teachers of our Department for their invaluable contributions to this project.

REFERENCES

- [1] 3GPP specification, "TS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding" Version 10.0.0 Release 10.
- [2] "ERICSSON" press backgrounder on mobile broadband and LTE" February 2011 http://www.3gpp.org/LTE
- [3] "Barnard Sklar" Fundamental and Application" Second Edition (Prentice-Hall, 2001, ISBN 0-13-084788-7).
- [4] Farooq Khan, Samsung Telecommunications America. " LTE for 4G Mobile Broadband" http://www.cambridge.org
- [5] Manjunatha K N, Kiran B, PrasannaKumar C "Design and ASIC Implementation of a 3GPP LTE- Advance Turbo Encoder and Turbo Decoder" International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 4, July-August 2012, pp.006-010.
- [6] S M Chadchan ,Member IEEE and C. B.Akki "3GPP LTE/SAE" International Journal of computer and Electrical engineering Vol 2,NO 5 October, 2010.
- [7] ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 6, October 2012

www.ijrt.org