

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

The Transformative Role of Artificial Intelligence in Healthcare

Miss Sana Shaikh

Course: Bachelor of Commerce

Supervisor: Dr. Sabina Ashfaque Shaikh

IQAC Coordinator

K.H.M.W Degree College of commerce

Abstract

Artificial Intelligence (AI) has emerged as one of the most transformating technologies in the healthcare sector, greatly enhancing diagnostics, patient care, drug discovery, and administrative efficiency. This research paper examines the influence of AI in healthcare by utilizing secondary data sourced from global reports, peer-reviewed journals, and industry publications. The study evaluates key AI applications, advantages, challenges, and future outlooks, accompanied by a comprehensive Review of Literature (ROL). The findings indicate that AI improves diagnostic precision, lowers healthcare expenses, streamlines clinical workflows, and speeds up medical research. Nevertheless, challenges such as data privacy concerns, algorithmic bias, and a shortage of skilled professionals continue to hinder widespread implementation. The paper concludes with suggestions for the responsible and effective integration of AI in the healthcare field.

Keywords: Artificial Intelligence, Healthcare Innovation, Medical Diagnostics, Clinical Decision Support, Health Data Analytics, Ethical AI

Introduction:

Healthcare systems worldwide are experiencing rapid changes, they still encounter numerous obstacles that undermine their efficiency and restrict their ability to deliver high-quality care. These obstacles encompass escalating healthcare expenses, which burden government finances and render quality medical services unattainable for many communities; increasing patient volumes due to population growth, extended life expectancy, and the rising prevalence of chronic illnesses; and a pervasive shortage of qualified healthcare professionals, especially in rural and underserved areas. Furthermore, contemporary medicine demands highly accurate diagnostics and prompt clinical decision-making, which are often challenging to achieve consistently through human expertise alone. These constraints highlight the urgent necessity for innovative technologies that can assist healthcare systems in providing precise, timely, and cost-effective care. In this regard, Artificial Intelligence (AI) has emerged as one of the most transformative and promising solutions. AI encompasses a variety of technologies—including machine learning, deep learning, natural language processing (NLP), and computer vision—that empower machines to learn from data, identify patterns, and make decisions with a high level of accuracy. These

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

technologies are increasingly being incorporated into healthcare processes. For instance, AI systems can analyze medical images such as X-rays, CT scans, and MRIs with accuracy that is comparable to or even surpasses that of human radiologists. Predictive algorithms can anticipate disease risks, facilitating early intervention and minimizing the chances of complications. AI-driven clinical decision support tools aid physicians by offering evidence-based recommendations, while automated systems enhance hospital operations, manage patient records, and alleviate administrative burdens. Additionally, AI is pivotal in personalized medicine, where treatment strategies are customized for individuals based on genetic, physiological, and lifestyle information.

2. Objectives of the Study

- 1. To comprehend the uses of Artificial Intelligence within the healthcare sector.
- 2. To evaluate secondary data regarding the influence of AI on diagnostics, treatment, and operational processes.
- 3. To examine the advantages and drawbacks of AI in contemporary healthcare systems.
- 4. To assess recent scholarly literature concerning AI applications in the field of healthcare.
- 5. To suggest strategies for the successful implementation of AI.

3. Research Methodology

- Type of Study: Descriptive and analytical
- Data Source: Secondary data
- Peer-reviewed journals
- WHO reports, OECD reports
- PwC, McKinsey, Deloitte healthcare reports
- Medical databases (PubMed, ScienceDirect)
- Data Analysis:
- Trend review
- Comparative analysis
- Thematic interpretation
- No primary survey or interviews were conducted.

4. Review of Literature (Expanded)

1. AI in Medical Imaging

Esteva et al. (2017) illustrated that deep learning algorithms are capable of detecting skin cancer with an accuracy that rivals that of seasoned dermatologists. Their groundbreaking research established that AI models, when trained on extensive image datasets, can analyze medical images more rapidly, consistently, and with a diminished likelihood of errors related to human fatigue. In addition to dermatology, AI has demonstrated encouraging outcomes in recognizing abnormalities

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

in radiological images, including X-rays, CT scans, and MRIs. These advancements assist radiologists in prioritizing urgent cases and enhancing early detection initiatives. (Esteva et al., 2017)

2. AI in Disease Prediction

Rajkomar, Dean, and Kohane (2019) emphasized the capability of AI to forecast diseases such as diabetes, heart failure, sepsis, and acute kidney injury through the analysis of electronic health records (EHR). Their study revealed that AI models can detect early warning signs and subtle risk patterns that may not be readily apparent to healthcare professionals. This predictive ability facilitates preventive healthcare, timely interventions, and improved allocation of medical resources. AI systems also play a role in monitoring patient deterioration in intensive care units (ICUs), thereby enhancing survival rates. (Rajkomar et al., 2019)

3. AI in Drug Discovery

Hughes et al. (2021) discovered that AI expedites the drug discovery process by examining millions of chemical compounds, forecasting molecular interactions, and pinpointing potential drug candidates with high precision. AI significantly reduces both the time and expenses associated with pharmaceutical research by discarding ineffective compounds early in the development process. Moreover, AI models are increasingly utilized to repurpose existing medications for new diseases, anticipate side effects, and simulate biological responses, thus making drug development more efficient and targeted. (Hughes et al., 2021)

4. AI for Clinical Decision Support

Shickel et al. (2018) illustrated that AI-driven Clinical Decision Support Systems (CDSS) enhance diagnostic precision and minimize medical errors by providing real-time, evidence-based insights. These systems evaluate patient data, medical histories, laboratory results, and global health databases to aid physicians in making well-informed clinical decisions. AI-enabled CDSS can also detect rare diseases, propose treatment options, and notify doctors about potential adverse drug interactions, thus improving patient safety. (Shickel et al., 2018)

5. AI in Oncology

Topol (2019) indicated that AI has been effectively utilized in oncology for tumor detection, treatment planning, and genomic analysis. AI supports oncologists in deciphering intricate genomic data that inform personalized cancer therapies tailored to individual patient profiles. Computer vision technologies can accurately identify tumors in imaging examinations, while machine learning algorithms can forecast treatment responses and survival rates. These innovations render cancer care more precise, timely, and centered on the patient. (Topol, 2019)

6. AI in Hospital Administration

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC – KHMW College of Commerce-December 2025

Davenport and Kalakota (2019) demonstrated that AI alleviates the administrative load in hospitals by automating processes such as billing, insurance claims, appointment scheduling, and patient record management. This automation significantly decreases paperwork and administrative inaccuracies, enabling healthcare personnel to concentrate more on patient care. AI-driven workforce management solutions also enhance bed allocation, optimize staff schedules, and decrease patient wait times, ultimately boosting hospital efficiency and patient satisfaction. (Davenport & Kalakota, 2019)

7. AI in Telemedicine

Sharma et al. (2022) discovered that telemedicine platforms powered by AI significantly enhanced access to healthcare, particularly during the COVID-19 pandemic. AI technologies facilitated remote consultations, symptom assessments, and real-time health monitoring, which contributed to alleviating the pressure on hospitals. AI-driven chatbots supported patients with triage, responded to inquiries, and arranged virtual appointments. These platforms effectively narrowed the divide between healthcare providers and patients, especially in remote and underserved regions. (Sharma et al., 2022)

This section offers a comprehensive analysis of the impact of AI in healthcare, utilizing secondary data from Statista, WHO, Google Health, IBM Research, McKinsey, Deloitte, and peer-reviewed research. The data illustrates prevailing industry trends and showcases how AI is revolutionizing various aspects of healthcare.

5.1 Global AI in Healthcare Market Growth

The worldwide market for AI in healthcare has experienced significant growth over the past ten years. As reported by Statista (2023), the market was valued at USD 11.06 billion in 2021 and is anticipated to reach around USD 187 billion by 2030, exhibiting a remarkable CAGR of 37%. This rapid expansion is fueled by the growing digitalization of healthcare, investments in AI-driven medical technologies, and the escalating demand for quicker diagnostic solutions.

Several elements contribute to this expansion:

- The advancement of AI in medical imaging: AI models, including convolutional neural networks (CNNs), improve the accuracy of image analysis in radiology and pathology.
- The emergence of AI-assisted robotic surgeries: Surgical robots enhance precision, minimize blood loss, and reduce recovery times (Source: Intuitive Surgical Report, 2022).
- The proliferation of telemedicine and remote care: The adoption of digital health post-COVID has accelerated AI-based teleconsultations (Source: WHO, 2021).
- The surge in healthcare data generation: Electronic health records (EHR), wearable sensors, and digital diagnostics generate vast datasets that are ideal for AI analysis (Source: OECD Health Data, 2022).

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

The global growth of AI in the market signifies its increasing importance in alleviating the healthcare burden and enhancing clinical outcomes.

5.2 AI in Diagnostics

Artificial Intelligence has transformed medical diagnostics by enhancing accuracy, shortening turnaround times, and improving early disease identification.

Key evidence includes:

- Google Health (2020) indicated that AI reached 99% accuracy in identifying diabetic retinopathy, equaling the performance of specialized ophthalmologists.
- AI-driven mammography technologies identify breast cancer sooner than conventional imaging methods, decreasing false positives by as much as 9% (Source: Nature Medicine, 2020).
- Predictive algorithms have advanced the diagnosis of heart disease by recognizing patterns in ECG and imaging data that may be missed by human observers (Source: American Heart Association, 2021).

AI minimizes diagnostic durations from days or hours to mere minutes, facilitating quicker treatment decisions and lowering the risk of complications. The precision and effectiveness of AI tools assist physicians in early detection, particularly in the fields of oncology, cardiology, and ophthalmology.

5.3 AI in Treatment & Personalized Medicine

Artificial Intelligence is being increasingly utilized to tailor treatments according to the unique profiles of individual patients. Through the analysis of genetic sequences, biomarker information, lifestyle data, and clinical histories, AI enhances the practice of precision medicine. Examples include:

- IBM Watson for Oncology is capable of interpreting millions of scientific publications and patient records to recommend evidence-based cancer therapies (Source: IBM Research, 2021).
- AI-driven surgical robots, like the Da Vinci system, aid surgeons in executing minimally invasive procedures with exceptional precision, reduced complications, and faster recovery periods (Source: Intuitive Surgical Data, 2022).
- AI algorithms can forecast patient responses to various medications, allowing doctors to steer clear of ineffective treatments.

In summary, AI reduces human error, enhances treatment precision, and results in more personalized and effective healthcare.

5.4 AI in Hospital Operations

AI plays a vital administrative role in enhancing hospital operations and boosting institutional efficiency.

Hospitals that implement AI technologies have reported:

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

- A 30–40% increase in administrative efficiency due to the automation of tasks such as billing, claims processing, and report generation (Source: McKinsey Healthcare Report, 2022).
- Decreased patient waiting times through AI-driven scheduling systems that forecast peak hours and allocate staff more efficiently.
- Automated insurance processing utilizing AI tools that verify patient information and identify fraudulent claims.
- Improved digital record management, which enhances accuracy and minimizes paperwork.

AI further supports hospitals in bed management, workforce planning, inventory control, and supply chain management. These advancements lead to greater patient satisfaction and lower operational costs.

5.5 AI in Public Health & Pandemic Control

The COVID-19 pandemic underscored the crucial importance of AI in managing public health. During the pandemic, AI was employed for:

- Forecasting outbreak hotspots via real-time data modeling (Source: Johns Hopkins University, 2020).
- Observing social distancing through computer vision technologies in public areas.
- Conducting automated thermal screenings at airports, hospitals, and train stations.
- Assisting in vaccine research and testing, where AI contributed to the analysis of protein structures and expedited vaccine development (Source: Moderna Research Report, 2021).

AI empowered governments and healthcare organizations to respond more swiftly and effectively, thereby decreasing transmission rates and enhancing public safety.

5.6 Challenges Identified

Despite notable progress, the incorporation of AI in healthcare encounters numerous obstacles:

- Concerns regarding data privacy: Medical information is highly sensitive, and any breaches can result in serious repercussions.
- Bias present in AI algorithms: When datasets lack diversity, AI predictions may become discriminatory or erroneous (Source: WHO Ethics Report, 2022).
- Elevated costs associated with AI adoption: Numerous hospitals, particularly in developing nations, do not possess the financial means to implement sophisticated AI systems.
- Insufficient number of skilled AI professionals: The healthcare workforce requires reskilling to effectively engage with AI technologies.
- Resistance from medical personnel: Anxiety over job security and skepticism towards automated systems contribute to limited acceptance.

Tackling these issues is essential for fully harnessing AI's capabilities within health systems globally.

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

6. Findings

- 1. AI significantly improves diagnostic accuracy and treatment quality.
- 2. Administrative and operational efficiency increases substantially.
- 3. AI reduces healthcare costs in the long run.
- 4. Major growth is seen in telemedicine, imaging, and predictive healthcare analytics.
- 5. Challenges such as data privacy and skill gaps require immediate attention.

7. Recommendations

For Healthcare Providers

- Invest in training programs focused on AI for medical personnel
- Establish AI systems that are transparent and adhere to ethical standards
- Embrace hybrid approaches that integrate human expertise with AI technologies

For Governments

- Enhance laws regarding data protection
- Provide support for startups in the AI healthcare sector
- Foster the development of a national digital health infrastructure

For Researchers

- Prioritize the creation of AI models that are free from bias
- Work on the development of more accessible medical datasets
- Promote collaboration across various disciplines

9. Conclusion

Artificial Intelligence has emerged as a crucial component of the contemporary healthcare landscape. Ranging from diagnostics to pharmaceutical development and hospital administration, AI significantly improves efficiency, precision, and accessibility. Secondary data evidently indicates a swift global integration of AI within healthcare, showcasing substantial potential for future expansion. Nevertheless, ethical concerns, privacy threats, and technological obstacles need to be tackled to ensure responsible AI deployment. Through strategic investments and appropriate regulations, AI has the capacity to transform healthcare and enhance patient outcomes on a global scale.

10. References

- 1. Davenport, T., & Kalakota, R. (2019). The possibilities of artificial intelligence in the field of healthcare. Future Healthcare Journal, 6(2), 94–98.
- 2. Esteva, A., Kuprel, B., Novoa, R., et al. (2017). Classification of skin cancer at a dermatologist level using deep neural networks. Nature, 542(7639), 115–118.
- 3. Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2021). Foundations of early drug discovery facilitated by artificial intelligence. Nature Reviews Drug Discovery, 20, 199–216.

THOLEGARIAN OF RESEARCE PARTIES AND TECHNOLISM AND TECHNOLISM AND THE CONTROL OF THE CONTROL OF

International Journal of Research and Technology (IJRT)

International Open-Access, Peer-Reviewed, Refereed, Online Journal ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

Conference "Innovation and Intelligence: A Multidisciplinary Research on Artificial

Intelligence and its Contribution to Commerce and Beyond"

Held at IQAC - KHMW College of Commerce-December 2025

- 4. Rajkomar, A., Dean, J., & Kohane, I. (2019). The application of machine learning in the medical field. New England Journal of Medicine, 380(14), 1347–1358.
- 5. Sharma, A., Kaur, P., & Singh, D. (2022). The significance of AI-enabled telemedicine during and following the COVID-19 pandemic. Journal of Medical Systems, 46(8).
- 6. Shickel, B., Tighe, P., Bihorac, A., & Rashidi, P. (2018). Deep EHR: Clinical decision support powered by AI. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604.
- 7. Topol, E. (2019). Medicine of high performance: The merging of human and artificial intelligence. Nature Medicine, 25(1), 44–56.
- 8. P. Devi, H. Kaur, R. Kumar, S. Aluvala and S. Singh, "Artificial Intelligence is Revolution or Devolution for Employability," 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 2023, pp. 367-371, doi: 10.1109/ICIMIA60377.2023.10425850.
- 9. Shaikh, S. A., & Jagirdar, A. H. (2026). Beyond AI dependence: Pedagogical approaches to strengthen student reasoning and analytical skills. In S. Khan & P. Pringuet (Eds.), Empowering learners with AI: Strategies, ethics, and frameworks (Chapter 8, pp. 1–16). IGI Global. https://doi.org/10.4018/979-8-3373-7386-7.ch008
- 10. Shaikh, S. A. (2024). Empowering Gen Z and Gen Alpha: A comprehensive approach to cultivating future leaders. In Futuristic Trends in Management (IIP Series, Vol. 3, Book 9, Part 2, Chapter 2). IIP Series. https://doi.org/10.58532/V3BHMA9P2CH2
- 11. Chougle, Z. S., & Shaikh, S. (2022). To understand the impact of Ayurvedic health-care business & its importance during COVID-19 with special reference to "Patanjali Products". In Proceedings of the National Conference on Sustainability of Business during COVID-19, IJCRT, 10(1),
- 12. Bhagat, P. H., & Shaikh, S. A. (2025). Managing health care in the digital world: A comparative analysis on customers using health care services in Mumbai suburbs and Pune city. IJCRT. Registration ID: IJCRT_216557.
- 13. Parikh, V. C. (2022) Strategic talent management in education sector around organizational life cycle stages! JOURNAL OF THE ASIATIC SOCIETY OF MUMBAI, SSN: 0972-0766, Vol. XCV, No.11.
- 14. Parikh, V. (2023). Whistleblowing in B-Schools, Education and Society, Vol-47, Issue 1, Pg. 183-189