
ISSN: 2321–7529(Online) | ISSN:2321–7510

www.ijrt.org

BENCHMARKING CASSANDRA

Megha Shah
1,2,3

Dept. of Computer Engineering, Sinhgad Academy of Engineering, University of Pune

Abstract— With the increasing need for storage of unstructured

data, the need of NoSql databases have increased. The most

widely used NoSql database is the column based Cassandra.

While there has been growth in the usage of Cassandra,

evaluating its performance becomes important and crucial to

applications using Cassandra on a large scale for storage.

Further, they are being applied to a diverse range of applications

that differ considerably from traditional serving workloads. The

number of emerging cloud serving systems and the wide range of

proposed applications, coupled with a lack of performance

comparisons, makes it difficult to understand the tradeoffs

between systems and the workloads for which th

aim to benchmark Cassandra , with the goal of facilitating

performance comparisons between versions of Cassandra while

using YCSB to generate different workloads. We define a core set

of benchmarks and report results for Cassandra evaluat

against various performance parameters.

Keywords—NoSQL, Cassandra, YCSB(yahoo cloud service

benchmark), workloads

I. INTRODUCTION

Cassandra is a massively scalable open source NoSQL

database. Cassandra is perfect for managing large amounts of

structured, semi-structured, and unstructured data across

multiple data centers and the cloud. Cassandra delivers linear

scalability and performance across many commodity servers

with no single point of failure, and provides a powerful

dynamic data model designed for maximum flexibility and

fast response times.. When comparing Cassandra to a

relational database, the column family is similar to a table in

that it is a container for columns and rows. However, a column

family requires a major shift in thinking

from the relational world.

In a relational database, you define tables, which have

defined columns. The table defines the column names and

their data types, and the client application then supplies rows

conforming to that schema: each row contains the same fixed

set of columns. In Cassandra, you define column families.

Column families can (and should) define metadata about the

columns, but the actual columns that make up a row are

determined by the client application. Each row can have a

different set of columns. There are two types of column

families:

7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

BENCHMARKING CASSANDRA

Megha Shah
1
, Poonam Pany

2
, Priyanka Makhija

3

Dept. of Computer Engineering, Sinhgad Academy of Engineering, University of Pune

With the increasing need for storage of unstructured

data, the need of NoSql databases have increased. The most

widely used NoSql database is the column based Cassandra.

growth in the usage of Cassandra,

evaluating its performance becomes important and crucial to

applications using Cassandra on a large scale for storage.

Further, they are being applied to a diverse range of applications

ional serving workloads. The

number of emerging cloud serving systems and the wide range of

proposed applications, coupled with a lack of performance

comparisons, makes it difficult to understand the tradeoffs

between systems and the workloads for which they are suited. We

aim to benchmark Cassandra , with the goal of facilitating

performance comparisons between versions of Cassandra while

using YCSB to generate different workloads. We define a core set

of benchmarks and report results for Cassandra evaluating it

NoSQL, Cassandra, YCSB(yahoo cloud service

Cassandra is a massively scalable open source NoSQL

database. Cassandra is perfect for managing large amounts of

structured, and unstructured data across

multiple data centers and the cloud. Cassandra delivers linear

scalability and performance across many commodity servers

with no single point of failure, and provides a powerful

esigned for maximum flexibility and

fast response times.. When comparing Cassandra to a

relational database, the column family is similar to a table in

that it is a container for columns and rows. However, a column

 for those coming

In a relational database, you define tables, which have

defined columns. The table defines the column names and

their data types, and the client application then supplies rows

contains the same fixed

In Cassandra, you define column families.

Column families can (and should) define metadata about the

columns, but the actual columns that make up a row are

determined by the client application. Each row can have a

ifferent set of columns. There are two types of column

• Static column family (Typical Cassandra column family

design) refer fig 1 and

• Dynamic column family (Use with a

refer fig 2

Figure 1 Static

Figure 2 Dynamic Column Family

Column families consist of these kinds of columns:

• Standard: Has one primary key.

• Composite: Has more than one primary key,

recommended for managing wide rows.

• Expiring: Gets deleted d

• Counter: Counts occurrences of an event.

• Super: Used to manage wide rows, inferior to using

composite columns.

Although column families are very flexible, in practice a

column family is not entirely schema

International Journal of Research & Technology, Volume 2, Issue 1

 126

Dept. of Computer Engineering, Sinhgad Academy of Engineering, University of Pune ,India

Static column family (Typical Cassandra column family

Dynamic column family (Use with a custom data type)

Static Column Family

Dynamic Column Family

Column families consist of these kinds of columns:

Standard: Has one primary key.

more than one primary key,

recommended for managing wide rows.

Expiring: Gets deleted during compaction.

Counter: Counts occurrences of an event.

Super: Used to manage wide rows, inferior to using

Although column families are very flexible, in practice a

column family is not entirely schema-less. However, the data

ISSN: 2321–7529(Online) | ISSN:2321–7510

www.ijrt.org

models can be documented and compared qualitatively.

Evaluating the performance of the system is the harder

problem. Cassandra has made the decision to optimize for

writes by using on-disk structures that can be maintained using

sequential I/O . Furthermore, decisions about data partitioning

and placement, replication, transactional consistency, and so

on all have an impact on performance. Understanding the

performance implications of these decisions for a given type

of application is challenging. Developers of var

report performance numbers for the typical workloads for their

system, which may not match the workload of a target

application. Exact comparison is hard, given

on different workloads. Thus, developers often have to

download and manually evaluate performance. This process is

time-consuming and expensive. Our goal is to create a

standard benchmark and evaluate Cassandra under different

scenarios by creating various stress tests as workloads. These

are standard workloads that cover interesting parts of the

performance space (read-heavy workloads, write

workloads, scan workloads, etc.). The workload generator

makes it easy to define new workload types, and it is also

straightforward to adapt the client to benchmark new data

serving systems. In this paper, we describe Cassandra

benchmark, and aim to report performance results. Although

our focus in this paper is on performance and elasticity, the

framework is intended to serve as a tool for evaluating other

aspects such as availability and replication. [3]

II NOSQL

Interactive applications have changed dramatically over the last

15 years, and so have the data management needs of those

applications. Today, three interrelated megatrends

Big Users, and Cloud Computing – are driving the adoption of

NoSQL technology. And NoSQL is increasingly considered a

viable alternative to relational databases, especially as more

organizations recognize that operating at scale is better

achieved on clusters of standard, commodity serve

schema-less data model is often better for the variety and type

of data captured and processed today.

A NoSQL non-relational database provides a mechanism for

storage and retrieval of data that uses looser consistency

models than traditional relational databases. This approach is a

schema-free data model which includes simplicity of design,

horizontal scaling and finer control over availability. NoSQL

databases are often highly optimized key–value stores intended

for simple retrieval and appending operations, with the goal

being significant performance benefits in terms of latency and

throughput. NoSQL is less structured than RDBMS and does

not guarantee ACID.

7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

an be documented and compared qualitatively.

Evaluating the performance of the system is the harder

Cassandra has made the decision to optimize for

disk structures that can be maintained using

ions about data partitioning

and placement, replication, transactional consistency, and so

Understanding the

performance implications of these decisions for a given type

of application is challenging. Developers of various systems

report performance numbers for the typical workloads for their

system, which may not match the workload of a target

application. Exact comparison is hard, given numbers based

on different workloads. Thus, developers often have to

manually evaluate performance. This process is

consuming and expensive. Our goal is to create a

standard benchmark and evaluate Cassandra under different

scenarios by creating various stress tests as workloads. These

interesting parts of the

heavy workloads, write-heavy

workloads, scan workloads, etc.). The workload generator

makes it easy to define new workload types, and it is also

straightforward to adapt the client to benchmark new data

ving systems. In this paper, we describe Cassandra

performance results. Although

our focus in this paper is on performance and elasticity, the

framework is intended to serve as a tool for evaluating other

[3]

Interactive applications have changed dramatically over the last

15 years, and so have the data management needs of those

applications. Today, three interrelated megatrends – Big Data,

are driving the adoption of

NoSQL technology. And NoSQL is increasingly considered a

viable alternative to relational databases, especially as more

organizations recognize that operating at scale is better

achieved on clusters of standard, commodity servers, and a

less data model is often better for the variety and type

relational database provides a mechanism for

storage and retrieval of data that uses looser consistency

ational databases. This approach is a

free data model which includes simplicity of design,

horizontal scaling and finer control over availability. NoSQL

value stores intended

g operations, with the goal

being significant performance benefits in terms of latency and

throughput. NoSQL is less structured than RDBMS and does

NoSQL Databases follow the CAP theorem.

• Consistency: All database clients will read the

for the same query, even given concurrent updates.

• Availability: All database clients will always be able to

read and write data.

• Partition Tolerance: The database can be split into multiple

machines; it can continue functioning in the face of

network segmentation breaks.

III. CASSANDRA

Cassandra architecture helps to understand some of its

strengths and weaknesses from a distributed systems point of

view. The Cassandra architecture consists of several Cassandra

nodes together forming a Cassandra cluster. Figure shows the

architecture of a Cassandra cluster.

Cassandra is a distributed system. Cassandra consists of

multiple nodes, and it distributes the data across those nodes

(or shards them, in the database terminology). [1]

uses consistent hashing to assign data items to nodes. In simple

terms, Cassandra uses a hash algorithm to calculate the hash for

keys of each data item stored in Cassandra (for example,

column name, row ID). The hash

values (also known as keyspace) is divided among the nodes in

the Cassandra cluster. Then Cassandra assigns each data item

to the node, and that node is responsible for storing and

managing the data item. [4]. Each Cassandra serv

assigned a unique Token that determines what keys it is the

first replica for. If you sort all nodes' Tokens, the Range of

keys each is responsible for is (PreviousToken, MyToken], that

is, from the previous token (exclusive) to the node's tok

(inclusive). The machine with the lowest Token gets both all

keys less than that token, and all keys greater than the largest

Token; this is called a "wrapping Range."

Figure 3 Cassandra Architecture

International Journal of Research & Technology, Volume 2, Issue 1

 127

NoSQL Databases follow the CAP theorem.

Consistency: All database clients will read the same value

for the same query, even given concurrent updates.

Availability: All database clients will always be able to

Partition Tolerance: The database can be split into multiple

machines; it can continue functioning in the face of

network segmentation breaks.

CASSANDRA ARCHITECTURE

Cassandra architecture helps to understand some of its

strengths and weaknesses from a distributed systems point of

view. The Cassandra architecture consists of several Cassandra

orming a Cassandra cluster. Figure shows the

architecture of a Cassandra cluster. The first observation is that

Cassandra is a distributed system. Cassandra consists of

multiple nodes, and it distributes the data across those nodes

database terminology). [1] Cassandra

uses consistent hashing to assign data items to nodes. In simple

terms, Cassandra uses a hash algorithm to calculate the hash for

keys of each data item stored in Cassandra (for example,

column name, row ID). The hash range or all possible hash

values (also known as keyspace) is divided among the nodes in

the Cassandra cluster. Then Cassandra assigns each data item

to the node, and that node is responsible for storing and

Each Cassandra server [node] is

assigned a unique Token that determines what keys it is the

first replica for. If you sort all nodes' Tokens, the Range of

keys each is responsible for is (PreviousToken, MyToken], that

is, from the previous token (exclusive) to the node's token

(inclusive). The machine with the lowest Token gets both all

keys less than that token, and all keys greater than the largest

Token; this is called a "wrapping Range."

Cassandra Architecture

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

www.ijrt.org 128

IV. BENCHMARKING TIERS

Tier 1—Performance

The Performance tier of the benchmark focuses on the latency

of requests when the database is under load. Latency is very

important in serving systems, since there is usually an

impatient human waiting for a web page to load. However,

there is an inherent tradeoff between latency and Throughput.

As load increases, the latency of individual requests increases

as well since there is more contention for disk, CPU, network,

and so on. Typically application designers must decide on an

acceptable latency, and provision enough servers to achieve the

desired throughput while preserving acceptable latency. A

system with better performance will achieve the desired latency

and throughput with fewer servers. The Performance tier of the

benchmark aims to characterize this tradeoff for Cassandra by

measuring latency as we increase throughput, until the point at

which the database system is saturated and throughput stops

increasing. To conduct this benchmark tier, we need a

workload generator which serves two purposes: first, to define

the dataset and load it into the database; and second, to execute

operations against the dataset while measuring performance. A

set of parameter files defines the nature of the dataset and the

operations (transactions) performed against the data.[14]

Tier 2—Scaling

A key aspect of cloud systems is their ability to scale

elastically, so that they can handle more load as applications

add features and grow in popularity. The Scaling tier of the

database examines the impact on performance as more

machines are added to the system. There are two metrics to

measure in this tier:

Scale up—how does Cassandra perform as the number of

machines increases? In this case, we load a given number of

servers with data and run the workload. Then, we delete the

data, add more servers, load a larger amount of data on the

larger cluster, and run the workload again. If the database

system has good scaleup properties, the performance (e.g.,

latency) should remain constant, as the number of servers,

amount of data, and offered throughput scale

proportionally.[15]

Elastic speedup—How does the database perform as the

number of machines increases while the system is running? In

this case, we load a given number of servers with data and run

the workload. As the workload is running, we add one or more

servers, and observe the impact on performance. A system that

offers good elasticity should show a performance improvement

when the new servers are added, with a short or non-existent

period of disruption while the system is reconfiguring itself to

use the new server.

V. BENCHMARK WORKLOADS

 We hope to use a core set of workloads to evaluate different

aspects of a system’s performance. We can use a package

which is a collection of related workloads. Each workload

represents a particular mix of read/write operations, data sizes,

request distributions, and so on, and can be used to evaluate

systems at one particular point in the performance space.[18] A

package, which includes multiple workloads, examines a

broader slice of the performance space. Our goal was to

examine a wide range of workload characteristics, in order to

understand in which portions of the space of workloads

systems performed well or poorly. For example, some systems

may be highly optimized for reads but not for writes, or for

inserts but not updates, or for scans but not for point lookups.

The workloads in the core package can be chosen to explore

these tradeoffs directly. The workloads in the core package are

a variation of the same basic application type. In this

application, there is a table of records, each with F fields. Each

record is identified by a primary key, which is a string like

“user234123”. Each field is named field0, field1 and so on.

The values of each field are a random string of ASCII

characters of length L. For example, in the results reported in

this paper, we construct 1,000 byte records by using F = 10

fields, each of

L = 100 bytes. Each operation against the data store is

randomly chosen to be one of:

• Insert: Insert a new record.

• Update: Update a record by replacing the value of one field.

• Read: Read a record, either one randomly chosen field or all

fields.

• Scan: Scan records in order, starting at a randomly chosen

record key.

The number of records to scan is randomly chosen. For scan

specifically, the distribution of scan lengths is chosen as part of

the workload. Thus, the scan() method takes an initial key and

the number of records to scan.

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

www.ijrt.org 129

Figure 4 Workloads

We use the predefined workloads in the core package of

YCSB by assigning different distributions to the two main

choices we must make: which operation to perform, and which

record to read or write. The various combinations are shown in

Table. Although we do not attempt to model complex

applications precisely (as discussed above), we list a sample

application that generally has the characteristics of the

workload. [34]Loading the database is likely to take longer

than any individual experiment, while we run each experiment

(e.g., a particular workload at a particular target throughput

against a particular database). All the core package workloads

use the same dataset, so it is possible to load the database once

and then run all the workloads. However, workloads A and B

modify records, and D and E insert records. If database writes

are likely to impact the operation of other workloads (e.g., by

fragmenting the on-disk representation) it may be necessary to

re-load the database. We do not plan to prescribe a particular

database loading strategy in our benchmark, since different

database systems have different loading mechanisms (including

some that have no special bulk load facility at all).

VI. THE DESIGN

The nodetool utility in Cassandra allows collecting Cassandra

performance statics. Also commands like TOP and SAR are

useful to collect system statistics. As there is built in support of

performance counters that provide information about how

system is doing. Recoding information from this raw data is

more for troubleshooting in development of the application.

The performances parameters that need to be evaluated are

memory utilization, thread pool statistics, read and write

statistics for column families (CF), read and write statistics for

keyspaces. Hence we aim to write shell scripts to collect

statistics repeatedly after some time interval and store it in a

file (log file). We have to write a program which will raed this

file and display the statistics graphically. The aim is to build an

interactive UI that can test the Cassandra cluster in real time

and show the results.

VII. CONCLUSION

We have presented the strategy of developing a tool for

benchmarking Cassandra. This strategy will be used to

achieve reports displaying the performance of Cassandra

against various parameters. This will help application

developers determine whether Cassandra is suitable for their

application. It will also aim at achieving compaction and

compression techniques on the database.

REFERENCES

[1]Prashant Malik, AvinashLakshman. "Cassandra - a decentralized structured

storage system" The 3rd ACM SIGOPS International Workshop on Large

Scale DistributedSystems and Middleware (LADIS 09), October 2009.

[2] Bingwei Wang, Si Peng, Xiaomeng Zhang, Mark Bownes, Rob Paton and

FarshidGolkarihagh "Cassandra as used by Facebook" December 15,2010

[3]NabeelAhamedAkheel "Cassandra"

[4]DietrichFeatherston "Cassandra: Principles and Application"

[5]PrasannaBagade, Ashish Chandra, Aditya Dhende "Performance

Monitoring Tool for NoSQL Column Oriented Distributed Database

(Cassandra)"

