

Survey Paper on Power Management for Smart Microgrid Flexibility

¹Rajeev Ranjan, ²Prof. Manish Kethoriya

M. Tech. Scholar, Department of Electrical Engineering, SORT, People's University, Bhopal, India¹

Assistant Professor, Department of Electrical Engineering, SORT, People's University, Bhopal, India²

Abstract— A micro-grid approach plays an enormous role in the increased penetration of renewable energy resource into grid thus reducing the emissions due to large coal fired power plants. The energy management in micro-grid is a challenging task as a major share of the generation is from Renewable Energy Sources. Usually, there are Power electronic interfaces through which the local generators are connected to the micro-grid which enables the control capabilities such as generation-demand management through active reactive power control, synchronization of the inverter to grid, meeting the power quality standards for the injected currents, maximum power point tracking etc. The active-reactive power delivered by the inverter is controlled by current control with the objective of the steady state and transient state performance requirements.

Keywords:- PV Array, Wind Power, Micro-grid

I. INTRODUCTION

A well-known fact is that, in micro grids several renewable energy sources and conventional energy sources operate together. The switching in and switching out of any distributed generator will cause variation in the structure and model of the micro-grid at any point of time during the operation. So, it becomes necessary to ensure that the control structure and its action should be independent of the system and the operating conditions. From the discussions above, it is clear that intense testing of micro-grids in both the component level and configuration level is very important in the aspect of investigation and demonstration of the adequacy of the design. The testing is to be carried out both under steady state conditions and during transient conditions. To simulate various network configurations under specific input-output conditions, real-time simulators i.e. emulators are vital. Emulators give the flexibility of obtaining different energy flows, creating fault conditions, creating transient conditions help understanding the electricity distribution networks meticulously. For example, micro-grids working under islanded mode, the dynamics are very fast as there are no significant time constants present within the network [1]. The unpredictability of supply and demand is very common under islanded condition, which puts the stability and efficiency of the network under threat and test. Most of the generators are nature driven, and so for consistent performance of the interfacing power converters and the control loops, the experiments need to be repeated for every load/grid condition at every possible input condition. With an actual renewable energy source, it is not practical to repeatedly set the steady state and transient ambient conditions at all ambient values as required. Thus,

emulators representing any renewable energy source are primarily intended as a power source to the converters in experiments to verify the 18 reliability and repeatability of operation of the converter in steady state as well as in transient conditions of all possible input/grid conditions [2, 3]. Such a hardware simulator has to produce outputs effectively as will be given by a renewable energy source at any operating condition. Besides the renewable source emulator, the system emulators are also very much crucial in the development of fail-safe micro-grids. System emulators will have the network parameters for the actual spread length corresponding to micro-grids represented by lumped circuit parameters, thus allows the testing of various generators operating on it in a synchronized manner under various conditions. By the use of these emulators the smart grid system designers will get the response from low cost, safe, and easily configurable simulators and emulators instead of waiting for expensive and hardwired deployments for their testing. This will make the micro-grids to be operator-centered and operator-friendly.

II. MICROGRID STRUCTURE

Microgrid solar PV and wind generation system become very attractive solution in particular for stand-alone applications. Combining the two sources of solar and wind can provide better reliability and their hybrid system becomes more economical to run since the weakness of one system can be complemented by the strength of the other one. The integration of hybrid solar and wind power systems into the grid can further help in improving the overall economy and reliability of renewable power generation to supply its load. Similarly, the integration of hybrid solar and wind power in a stand-alone system can reduce the size of energy storage needed to supply continuous power. Solar electricity generation systems use either photovoltaics or concentrated solar power. The focus in this paper will be on the photovoltaics type. Detailed descriptions of the different technologies, physics and basics of PV can be found in many textbooks and papers such as [4-7]. Kurtz [8] pointed out that ten years ago the concentrator cell was only ~30% efficient compared with more than 40% today with the potential to approach 50% in the coming years. Si cells have efficiencies of 26% and multi-junction III-V-compound cells have efficiencies above 45% (48% in the laboratory) as pointed out in reference [9]. PV modules produce outputs that are determined mainly by the level of incident radiation. As the light intensity increases, photocurrent will be increased and the open-circuit voltage will be reduced [10]. The efficiency of any photovoltaic cell decreases with the increasing temperature which is non-uniformly distributed

across the cell [11]. The solar output power can be smoothed by the distribution of solar power in different geographical areas. Electricity from solar PV and concentrated solar power plants is significantly expensive and requires significant drop in cost or change in policies by either subsidizing or forcing the use of these technologies to be able to achieve significant market penetration. Global wind report (2012) indicated that the annual market grew by around 10% to reach around 45 GW and the cumulative market growth was almost 19%. Wind turbines (WTs) are classified into two types: horizontal-axis WT (HAWT) and vertical-axis WT (VAWT). The highest achievable extraction of power by a WT is 59% of the total theoretical wind power [12]. Hybrid solar-wind systems can be classified into two types: grid connected and stand-alone. Literature reviews for hybrid grid connected and stand-alone solar PV and wind energies were conducted worldwide by many researchers who have presented various challenges and proposed several possible solutions. Due to the nature of hybrid solar PV and wind energies, optimization techniques can play a good role in utilizing them efficiently. Graphic construction methods, linear programming, and probabilistic approach are few examples of optimization techniques that have been developed for techno-economically optimum hybrid renewable energy system for both types. The authors gave brief descriptions about those indicators and the different sizing methods. A review of control strategies for a hybrid renewable energy system was carried out in and another review was done in for optimization of hybrid renewable energy system with more focus on wind and solar PV systems.

III. LITERATURE REVIEW

Sayantam Sarkar et al., “Development and Analysis of an Efficient Energy Management for a PV Based Microgrid System”, [1], discusses on solar PV systems which includes power electronic devices, they have an influence on the efficient energy of the microgrid grid in the form of harmonic distortion and it have impact on distribution networks. A comprehensive harmonic behavior investigation has been performed on the distribution network with high solar PV systems penetration. A certain level of harmonics is also inserted into the network through nonlinear loads to resemble a realistic scenario. The study have been carried out through simulations of three case studies, namely solar PV system integrations at a single node in particular with and without the presence of background misrepresentations in the supply and finally solar PV penetration at multiple nodes with supply distortions. Additionally, an evaluation study has been showed at the University of Queensland solar PV site to validate simulation results. This study has emphasized the solar PV systems harmonic influences on real distribution networks and the impact of harmonics spread on transformer K-factor. Results show that the total harmonic distortions of current and voltage are exceeding the limits when the number of solar PV systems rises, foremost to transformer overloading and heating.

Mostefa Kermadi et al. “A Rule-based Management Controller using State flow for Grid-Connected PV-Battery Energy System supplying Household load”, [2], discusses the implementation of an energy management controller (EMC) for grid-connected PV system using the Stateflow approach. This approach provides a rapid design of the controller and efficient code generation for target hardware implementation. A typical micro-grid is considered in this study includes a PV generator, an energy storage system composed of battery and the EMC to balance the power flow between the different components of the system. PV systems are being employed in diverse applications of energy generation systems including both stand-alone and grid-connected systems. Due to the progress in power electronics technology, the penetration of PV systems in the utility distribution grid is greatly increased. The stochastic nature of the PV power injected into the utility grid involves large fluctuations of its frequency, power and voltage. Thereafter, the different operation modes of this controller and its development using the State-flow tool are detailed. Simulation is carried out using a 20 second weather profile to prove the effectiveness of the proposed EMC. It also demonstrated the simplicity of the controller development using the Stateflow tool.

Yashi Singh et al., “PV-battery based single phase microgrid with grid synchronization and de-synchronization capabilities”, [3], presents an integration of battery with a PV grid tied based single phase microgrid with multifaceted facilities. The proposed PV-battery grid tied system has capability to perform in dual mode i.e. grid integrated mode and islanded mode, according to the availability of grid. The proposed microgrid topology has multifunctional VSC and with an adaptive controller. At grid-tied mode, it deliveries solar peak power to the grid and load connected at the PCC. When the grid is absent, the control adjusts to standalone mode and adapts to continuous supply the load. A smart control algorithm is used with some logic control, for checking the availability of the grid. This system is modeled in MATLAB and developed model is used to simulate its performance. Simulation results are analyzed the performance and the response of microgrid with an adaptive algorithm with frequency and voltage control under mode transition condition.

Mohamad-Amin et al., “System performance in microgrids based hybrid PV systems”, [4], have reserve constraints based on hybrid diesel generators and PV system were formulated. Various case studies based on realistic data from an offgrid system were used to demonstrate the effectiveness of the integration of PV system considering spinning reserves constraints. There are many technical challenges in the integration of renewable energy resources in the context of microgrid. Among the numerous issues associated with micro-grids, system operation considering spinning reserve management should be properly studied to allow a better understanding of the system performance and potential savings due to renewable energy integrations at planning stages. Spinning reserve constraints in PV hybrid systems was considered for investigation of fuel consumptions at the planning stage. The results

demonstrated a significant fuel saving due to integration of PV system into off-grid systems.

Deepak Singh et al., "Management in Solar PV Fed Microgrid System With Battery Support", [5], have DC microgrids allow flexible operation in implementing control scheme, such that the DC microgrid voltages are within acceptable limit and capable of maintaining system power balance in both islanded as well as grid connected mode. The different methods of bidirectional DC-AC converter control are discussed. State of charge (SOC) of battery storage unit is used as an indicator for deciding the safe charge / discharge limits. System is divided components which includes, solar PV maximum power point tracking (MPPT) via boost converter, bi-directional DC-DC converter for battery charging applications, and bidirectional AC-DC converter for feeding AC loads, etc.,. System is tested via PSCAD based simulation platform, for operation in varying operating modes such that the power could be fed from DC to AC microgrid and vice-versa. DC-AC converter operating in closed loop sine pulse width modulation (SPWM) scheme, is used to control AC side voltage while operating in islanded mode. It works in rectification mode during grid connected mode. In day time, system is in islanded mode where excess / deficit power is exchanged with energy storage unit (ESU). In evening or night time, it operates in grid connected mode so as to charge the ESU.

R S Sreeleksmi et al., "A fuzzy logic controller for energy management in a PV - battery based microgrid system", [6], have integrating renewable energy resources such as PV to a microgrid there requires an efficient energy management strategy due to the intermittent nature of renewable energy resources. An energy storage system such as battery storage system is always used along with PV as an auxiliary energy source. They propose a fuzzy based controller for the energy management in a PV-Battery based microgrid. Depending on the availability of PV power, Battery State of Charge (SoC), Load the fuzzy logic controller will take the decision and corresponding switching signals will be produced.

A. Kadam et al., "A Multilevel Transformerless Inverter Employing Ground Connection Between PV Negative Terminal and Grid Neutral Point", [7], for the protected activity of transformer-less network associated photovoltaic (PV) inverters, the issue of common mode (CM) spillage current should be tended to painstakingly. Novel staggered transformer-less inverter geography was proposed, which totally disposes of CM spillage current by associating network nonpartisan point straightforwardly to the PV adverse terminal, subsequently bypassing the PV stray capacitance. It's anything but a minimal expense arrangement comprising of just four force switches, two capacitors, and a solitary channel inductor. When contrasted with half-connect geographies, with this inverter at least 27% and limit of 100% more yield voltage is acquired for a similar dc-interface voltage. The proposed inverter is dissected exhaustively and its changing example to create staggered yield while keeping up the capacitor voltage is examined. Reenactments and tests results affirm the possibility and great execution of the proposed inverter.

S. Jain et al., "A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multilevel Inverter for PV Systems", [8], have presents an improved fell staggered inverter (CMLI) in light of a profoundly effective and solid arrangement for the minimization of the spillage current. Aside from a decreased switch tally, the proposed conspire has extra highlights of low exchanging and conduction misfortunes. The proposed geography with the given heartbeat width adjustment (PWM) method decreases the high-recurrence voltage advances in the terminal and normal mode voltages. Keeping away from high-recurrence voltage advances accomplishes the minimization of the spillage current and decrease in the size of electromagnetic obstruction channels. Besides, the augmentation of the proposed CMLI alongside the PWM method for $2m + 1$ levels is additionally introduced, where m addresses the quantity of photovoltaic (PV) sources. The proposed PWM procedure requires just a solitary transporter wave for all $2m + 1$ degrees of activity. Complete subtleties of the examination of PV terminal and normal mode voltages of the proposed CMLI utilizing exchanging capacity idea, recreations, and trial results.

G. V. Bharath, A. Hota and V. Agarwal, "A New Family of 1- ϕ Five-Level Transformer-less Inverters for Solar PV Applications," [9], transform-less multilevel inverters are gaining a lot of popularity these days, especially for solar PV applications. This is because elimination of transformer, which is a bulky component, leads to reduction of the size, weight, and cost of the system. Moreover, system efficiency improves as the transformer contributes to a significant amount of copper and iron losses. The proposed family involves four inverter geographies: H8, H8-UPF, H10, and H10-UPF equipped for relieving the spillage current by having persistent lattice recurrence voltage at PV parasitic capacitor despite considering switch terminal capacitances. A particular characteristic of the TSC5LI is that 100% dc-transport usage, even activity, and consistent all out normal mode voltage (TCMV) is accomplished together. H8 variation of the proposed inverter family is concentrated broadly. The control technique utilized is a basic level-moved sine-triangle pulse width adjustment followed by the combination of the door beats using consistent capacities. Exchanging capacity based TCMV examination, exchanged capacitor plan, and misfortune investigation are introduced. Reproduction and test consequences of H8 variation are introduced to approve the hypothetical cases. Proposed geography is additionally contrasted and the current five-level transformer-less inverters to demonstrate its different benefits.

IV. GRID CONNECTED SYSTEM

The integration of combined solar and wind power systems into the grid can help in reducing the overall cost and improving reliability of renewable power generation to supply its load. The grid takes excess renewable power from renewable energy site and supplies power to the site's loads when required. Fig. 1 and Fig. 2 show the common DC and common AC bus grid-connected to solar PV and wind hybrid system, respectively

Power electronics topologies and control

There are two topologies for grid-connected solar PV and wind hybrid system as can be seen from Fig. 1 and Fig. 2. Fig. 1 shows that the DC outputs' voltages from individual solar PV, wind and battery bank stream, through individual DC/DC and AC/DC units, are integrated on the DC side and go through one common DC/AC inverter which acts as an interface between the power sources and the grid to provide the desired power even with only one source available. Hence, the renewable energy sources act as current sources and can exchange power with the grid and the common DC/AC inverter controls the DC bus voltage. The individual units can be employed for maximum power point tracking (MPPT) systems to have the maximum power from the solar PV and wind systems and the common DC/AC inverter will control the DC bus voltage.

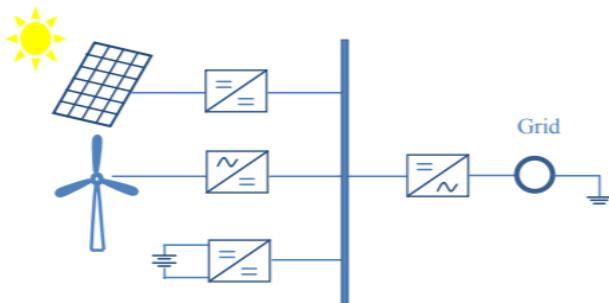


Figure 1: Grid-connected hybrid system at common DC bus

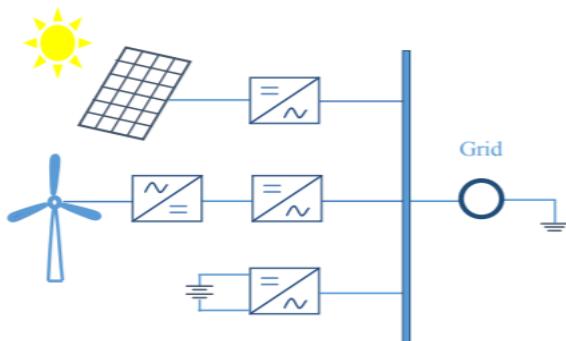


Figure 2: Grid-connected hybrid system at common AC bus

The battery bank is charged when there is an extra power and discharged (by supplying power) when there is shortage of power from the renewable energy sources. On the other hand, Fig. 2 shows that renewable energy sources are injecting power directly to the grid through individual DC/AC and AC/DC-DC/AC units.

Power quality

The increased penetration of grid-connected renewable energy sources has an impact on the grid power quality in particular weak grids. Voltage fluctuation, frequency fluctuation and harmonics are major power quality issues. Furthermore, intermittent energy from solar PV and wind has a huge impact on network reliability. However, accurate forecasting and scheduling systems can minimize the impacts. Various statistical forecasting and regression analysis approaches and algorithms are used to forecast weather pattern, solar radiation and wind speed [13]. System operator can adjust other dispatchable generation elsewhere

in a system to deal with any deficit or surplus power from renewable power generation [14]. This will reduce the impact of the fluctuations from the generation of the renewable energy sources. In addition, the distribution of RES to larger geographical area in small units instead of large unit concentrating in one area can control the intermittence effect of power generation from RES [15]. Energy storage devices like batteries or Uninterruptable Power Supply (UPS) can work as a balancing devices that provide power when there is an energy deficiency in renewable generation and store excess energy when there is surplus power from renewable generation. Active power filters such as dynamic voltage regulators, static synchronous compensators and unified power quality conditioners can be used to resolve voltage fluctuation. Similarly, power compensators such as fixed or switched capacitor can be used to resolve reactive power issue. They are the latest interfacing devices between grids and consumer appliances. Sudden changes in active power drawn by a load could cause system frequency fluctuation in AC grids. These changes represent unbalance situations between load and generation. In view of the above, it is important to design control loops for power and frequency control to mitigate quality issues. Bae and Kwasinski highlighted that a primary goal of a pulse width modulation (PWM) inverter controller was to regulate three-phase local AC bus voltage and frequency in a microgrid. Harmonics are normally caused by power electronics devices and non-linear appliances. Appropriate filters and PWM switching converter can be used to mitigate harmonic's distortion.

Stand-alone (autonomous) system

The stand-alone or autonomous power system is an excellent solution for remote areas where utilities facilities, in particular transmission lines, are not economical to run or difficult to install due to their high cost and/or difficulties of terrain, etc. The stand-alone systems can be sub-classified into common DC bus or common AC bus. The strength of one source could overcome the weakness of the other during a certain period of time. For stand-alone applications, storage cost still represents the major economic issue. Combining both PV solar and wind powers can minimize the storage requirements and ultimately the overall cost of the system. Increasing PV panels and capacity of wind turbines could be a better choice compared to the increasing of batteries since batteries are much more expensive with a shorter lifespan compared to the life time of a PV or WT. However, for high reliability systems, too few batteries can't meet the reliability requirements, which will incur more cost since too many PV modules or too large WTs will be required. For a small islanded electricity system in New Zealand, with winter peaking demand, I. G. Mason found that the average storage ratio for solar PV to wind was 1.768:1 in comparison to 0.613:1 (residential) and 0.455:1 (farm dairy) with summer peaking demand. Integration of renewable energy generation with battery storage and diesel generator back-up systems is becoming cost-effective solution for resolving less usable renewable energy during the year. However, if storage runs out, there is no way of importing energy. Therefore, integrating PV and wind energy sources with fuel cells is a promising alternative back up energy source for hybrid generation systems.

Distributed generators can help fluctuations in power supply since generations' units will be close to the loads. However, introducing distributed generators will require an up gradation in the existing protection schemes.

Optimization

As mentioned earlier, a combination of solar PV and wind sources improves overall energy output. However, energy storage system is required to have a continuous power supply and cover any deficiency in power generation from the renewable energy sources. The storage system can be battery banks, fuel cells, etc. with a more focus here on battery banks. Various optimization techniques have been reported which could be applied to reach a technoeconomically optimum hybrid renewable energy system. A comparison was made for many optimization techniques of hybrid systems. For remote areas which represent most of the standalone application for hybrid solar PV and wind systems, it is not always easy to find long-term weather data, such as solar radiation and wind speed that are used for sizing purposes. Hence, more artificial intelligence techniques such as fuzzy logic, genetic algorithms and artificial neural network are used for sizing standalone systems in comparison with traditional sizing method based on long-term weather data.

Wind Energy Systems

Wind energy has the biggest share in the renewable energy sector [13, 14]. Over the past 20 years, grid connected wind capacity has more than doubled and the cost of power generated from wind energy based systems has reduced to one-sixth of the corresponding value in the early 1980s [15]. The important features associated with a wind energy conversion system are:

- Available wind energy
- Type of wind turbine employed
- Type of electric generator and power electronic circuitry employed for interfacing with the grid.

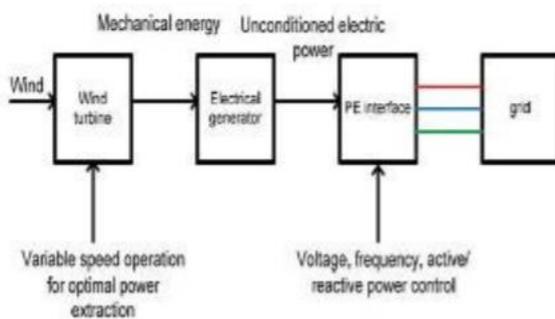


Figure 3: Variable speed wind energy conversion system

Wind energy – Wind speeds, air pressure, atmospheric temperature, earth surface temperature etc., are highly inter-linked parameters. Due to the inherent complexity, it is unrealistic to expect an exact physics based prediction methodology for wind intensity/sustainability. However, distribution based models have been proposed, and employed to predict the sustainability of wind energy conversion systems [4]. Detailed explanation of the wind energy resources is beyond the scope of this paper. Based on

studies it has been reported that the variation of the mean output power from a 20 year period to the next has a standard deviation of less than 0.1 [4]. It can be concluded with reasonable confidence that wind energy is a dependable source of clean energy. Based on the aerodynamic principle utilized, wind turbines are classified into drag based and lift based turbines. Based on the mechanical structure, they are classified into horizontal axis and vertical axis wind turbines. With respect to the rotation of the rotor, wind turbines are classified into fixed speed and variable speed turbines. Presently the focus is on horizontal axis, lift based variable speed wind turbines [2], [3]. Power electronic circuits play a crucial enabling role in variable speed based wind energy conversion systems. Fixed speed wind turbines are simple to operate, reliable and robust. However the speed of the rotor is fixed by the grid frequency. As result, they cannot follow the optimal aerodynamic efficiency point. In case of varying wind speeds, fixed speed wind turbines cannot trace the optimal power extraction point. In variable speed wind turbines, power electronic circuitry partially or completely decouples the rotor mechanical frequency from the grid electrical frequency, enabling the variable speed operation. The type of electric generator employed and the grid conditions dictate the requirements of the power electronic (PE) interface. Fig. 1 depicts a variable speed wind energy conversion system. The electrical generator popularly employed for partially variable speed wind energy conversion systems are doubly-fed induction generators [5]. Fig. 2 depicts a doubly-fed induction generator where the rotor circuit is controlled by the power converter system via the slip rings and the stator circuit is connected to the grid. This method is advantageous as the power converter has to handle a fraction ~ 25% - 50% of the total power of the system [5]. The power converter system employs a rotor side ac-dc converter, a dc link capacitor, and a dc-ac inverter connected to the grid as shown in Fig. 4.

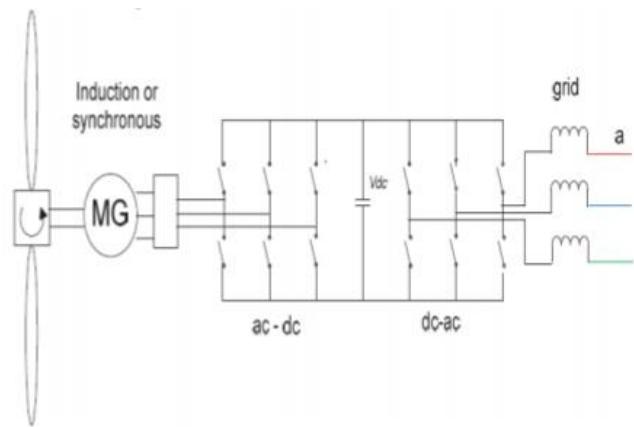


Figure 4: Fully variable wind energy conversion system

V. CONCLUSION

This paper has provided a review of challenges and opportunities on integrating solar PV and wind energy sources for electricity generation. The main challenge for grid-connected system as well as the stand-alone system is the intermittent nature of solar PV and wind sources. By integrating the two resources into an optimum combination,

the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This definitely has bigger impact on the stand-alone generation. Integration of renewable energy generation with battery storage and diesel generator back-up systems is becoming a cost-effective solution for stand-alone type. The wind-battery-diesel hybrid configuration can meet the system load including peak times. Energy management strategies should ensure high system efficiency along with high reliability and least cost. Good planning with accurate forecasting of weather pattern, solar radiation and wind speed can help in reducing the impact of intermittent energy.

REFERENCES

- [1] Sayantam Sarkar, Anjan Kumar Dan and Nitai Pal, "Development and Analysis of an Efficient Energy Management for a PV Based Microgrid System", IEEE 2020.
- [2] Mostefa Kermadi , Zainal Salam and El Madjid Berkouk , "A Rule-based Management Controller using Stateflow for Grid-Connected PV-Battery Energy System supplying Household load , "Proc. IEEE International Symposium on Electronics for Distributed Generation Systems, Jun. 2018.
- [3] Yashi Singh , Bhim Singh and Sukumar Mishra , " PV-battery based single phase microgrid with grid synchronization and de-synchronization capabilities", Proc. IEEE IEEMA Engineer Infinite Conference , March 2018.
- [4] Mohamad-Amin Nasr and Ehsan Nasr-Azadani , "System performance in microgrids based hybrid PV systems", Proc. IEEE & Energy Society General Meeting, Jul. 2017.
- [5] Deepak Singh, Alok Agrawal and Rajesh Gupta," Management In Solar PV Fed Microgrid System With Battery Support", Proc. IEEE INDICON, Dec. 2017.
- [6] R S Sreeleksmi , Athul Ashok and Manjula G Nair , "A fuzzy logic controller for energy management in a PV - battery based microgrid system", Proc. IEEE International Conference on Technological Advancements in and Energy , Dec. 2017.
- [7] A. Kadam and A. Shukla, "A Multilevel Transformerless Inverter Employing Ground Connection Between PV Negative Terminal and Grid Neutral Point," in *IEEE Transactions on Industrial Electronics*, vol. 64, no. 11, pp. 8897-8907, Nov. 2017, doi: 10.1109/TIE.2017.2696460.
- [8] S. Jain and V. Sonti, "A Highly Efficient and Reliable Inverter Configuration Based Cascaded Multilevel Inverter for PV Systems," in *IEEE Transactions on Industrial Electronics*, vol. 64, no. 4, pp. 2865-2875, April 2017, doi: 10.1109/TIE.2016.2633537.
- [9] G. V. Bharath, A. Hota and V. Agarwal, "A New Family of 1- ϕ Five-Level Transformerless Inverters for Solar PV Applications," in *IEEE Transactions on Industry Applications*, vol. 56, no. 1, pp. 561-569, Jan.-Feb. 2020, doi: 10.1109/TIA.2019.2943125.
- [10] B. Shaffer, H. A. Hassan, M. J. Scott, S. U. Hasan, G. E. Town and Y. Siwakoti, "A common-ground single-phase five-level transformerless boost inverter for photovoltaic applications," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 368-374, doi: 10.1109/APEC.2018.8341037.
- [11] N. Vosoughi, S. H. Hosseini and M. Sabahi, "A New Transformer-Less Five-Level Grid-Tied Inverter for Photovoltaic Applications," in *IEEE Transactions on Energy Conversion*, vol. 35, no. 1, pp. 106-118, March 2020, doi: 10.1109/TEC.2019.2940539.
- [12] F. B. Grigoletto, "Five-Level Transformerless Inverter for Single-Phase Solar Photovoltaic Applications," in *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 8, no. 4, pp. 3411-3422, Dec. 2020, doi: 10.1109/JESTPE.2019.2891937.
- [13] J. S. Ali, N. Sandeep, D. Almakhles and U. R. Yaragatti, "A Five-Level Boosting Inverter for PV Application," in *IEEE Journal of Emerging and Selected Topics in Power Electronics*, doi: 10.1109/JESTPE.2020.3046786.
- [14] M. Abarzadeh and K. Al-Haddad, "An improved active-neutral-pointclamped converter with new modulation method for ground power unit application," *IEEE Trans. Ind. Electron.*, vol. 66, no. 1, pp. 203-214, Jan. 2019.
- [15] Y. P. Siwakoti, "A new six-switch five-level boost-active neutral point clamped (5L-Boost-ANPC) inverter," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, 2018, pp. 2424-2430.