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Abstract— In this article, we consider the robust estimation of 

a location parameter using M- estimators. We propose here to 

couple this estimation with the robust scale estimate proposed in 

[Dahyot and Wilson, 2006]. The resulting procedure is then 

completely unsupervised. It is applied to camera motion 

estimation and moving object detection in videos. Experimental 

results on different video materials show the adaptability and the       

r(a)  1/(2a)  accuracy of this new robust approach. 

 r(3a) 
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I. INTRODUCTION  

Many problems in computer vision involve the separation of a 

set of data into two classes, one of interest in the context of 

the application and the remaining one. For instance, edge 

detection in images requires the thresholding of the gradient 

magnitude to discard noisy flat areas from the edges. The 

challenge is then to automatically select the appropriate 

threshold [Rosin, 1997]. 

Regression problems also involve the simultaneous estimation 

of the variance or standard deviation of the residuals/errors. 

The presence of a large number of outliers makes difficult the 

estimation of the parameters of interest. Performance of robust 

estimators is highly dependent on the setting of a threshold or 

scale parameter, to separate the good data (inliers) that fit the 

model, from the gross errors (outliers) [Chen and Meer, 

2003]. The scale parameter, needed in M-estimation and 

linked to the scale parameter of the inliers residuals, is often 

set a priori or estimated by the Median Absolute Deviation. In 

[Dahyot and Wilson, 2006], a robust non-parametric 

estimation for the scale parameter has been proposed and then 

combined with a robust RANSAC [Fischler and Bolles, 1981] 

for object recognition. This paper proposes to combine the 

robust scale parameter estimation with a M-estimation of the 

camera motion parameter in videos. The whole scheme is 

unsupervised. The estimated scale parameter is also used to 

detect moving objects in the sequences. 

 

II. ROBUST SCALE ESTIMATION 

II.I Observations 

The observations consist in a set of independent samples {xi}  

of a random variable X. Its probability density function can be 

written as a mixture: 

 

PX( x \ a ,  0) =  V X ( x \ a ,  0 ,  C ) ■ PX(C) + PX(x\C) ■ PX(x\C)... (1) 

 

with the pdf VX (x| a, 9, C ) corresponding to a particular 

class C  of interest (inliers) that depends onto one scale 

parameter a and possibly also on a location parameter 9. 

The other pdf PX(x|C) in the mixture is generated by 

possible outliers occurring in the observations (class C) 

and the parameters of interest a and 9 do not depend on 

those outlying observations. VX (C) is the proportion of 

inliers and VX (C) is the proportion of outliers.  

In this work, we assume the distribution of the inliers to be 

a Generalized centered Gaussian [Aiazzi et al., 1999]: 

 p X ( x | C , a , 9 )  =  2 r (a ) -a- f3 a  e x p            \ x ( e ) \ 1 / a  d…...(2) 

                               

                                         with p=a
1/a

 

 

Setting the shape parameter a = 1 (Laplacian law) and a = 1/2 

(Gaussian law) in equation (2), are two popular hypotheses 

[Hasler et al., 2003, Dahyot et al., 2004]. We assume a is 

known and focus on the estimation of the scale a and 9. 

II.II Robust scale estimation knowing the location parameter 9 

We now assume that we have n independent variable Xn of the 

same nature of the X previously defined. Samples for each Xn 

can be easily obtained for instance by splitting the original 
sample set of samples {xi} into n sets. Depending on the 

applications, the n random variables can also be naturally 

defined (see section 3). We define the variables: 

 

                            Z = £2=1 |Xn|1/C Y = Za                                     ……(3) 
 

Inliers of Z and Y (in class C) are the samples Zj  or yj  

computed with n independent samples of X such that Vi, xi G 

C. For n = 1 and Z = |X|
l/a

, the pdf VZ(z|9, a, C) corresponds to 

the gamma distribution: 

ya -1 
     V Z

(z|9,a, C) = |(a,d) (z) = r(a) ■ pa eXP             z > 0          ….(4) 
 

When n > 1, the pdf V Z (z|C, a) is the gamma function 
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G Z \ ( n a , y) ( z ) ,  and the pdf of Y can easily be inferred 

[Dahyot and Wilson, 2006]. The maximum of the 

distributions VZ(z|C, a) and VY(y|C, a) can be then computed: 

ZmaxC = p ■ (na - 1), na >1                                                                                       

YmaxC = [(n - 1) a p]a, n > 1  

 

Those maxima depend on the parameter a by definition of p 
(cf. eq. (2)). From equation (5), the scale a can be computed 
by: 
 

 

 

 

 

 

The maximum of the distributions of Y and Z has first to be 

located. Depending on the proportion and the values of the 

outliers, the localization of the maximum needed in the 

estimation gets more difficult. We assume that the relevant 

maximum for the estimation is the closest peak to zero in the 

distributions VY (y|a, 9) and VZ(z|a, 9).2.3 Computation of the 

scale estimate in practice. The scale estimates are computed 

using the mean shift procedure on the set of samples of vari-

ables Y or Z, starting from the minimum sample value (or 

starting from zero). More details are presented in [Dahyot and 

Wilson, 2006]. However, in some signal processing 

applications, the digitized signal is discrete with known 

quantized levels in a finite domain. For instance, pixel values 

in video data are integers in [0; 255]. Most of all, the variable 

Z (or Y) has its values in a one-dimensional space. Therefore, 

as an alternative to the kernel representation of the distribution 

and the Mean Shift algorithm to perform the estimation, 

standard histograms can be easily used and their derivatives 

easily computed using filters. This is another practical and 

faster way to perform the estimation when dealing with a 

digitized signal. Both Y and Z perform similarly robust scale 

estimation (see [Dahyot and Wilson, 2006]). 

 

III. APPLICATIONS 

Section 3.1 presents an experiment for unsupervised moving 

object detection in static sequences. The variable Z is used for 

the scale estimation, there is no location parameter d (the 

camera motion is null) and the shape parameter is chosen       

a = 1. Section 3.1 extends those preliminary results to camera 

motion estimation and moving object detection. The variable 

Y is used for the scale estimation, the location parameter d 

corresponds to a 6-dimensional camera motion vector and the 

shape parameter is chosen a=1/2. 

III.I Application to moving object detection in static camera 

sequences  

III.I.I Using colour video data n = 3 

We are considering two different colour images It = 

(R t, G t, B t ) and It' = (Rt>, Gt>, Bt>) from a video sequence. 

The samples of the random variables Xn for n e {1, 2, 3 } are 

computed as the inter-frame difference on each colour band 

for each position i of the pixel: 

d1) 

Xi : x(1) = R f  ( i )  -  R t ( i )  X 2  :  x i 2 )  =  O f  ( i )  -  G t ( i )  X3 : 

x(3) = Bt (i) - Bt(i)                                                           …….(7) 

 
Z : zi = |x(1)| + |x(2)| + |x(3) 1                   (2) |     „(3)i 

 

The distribution of Z has been drawn using a histogram over 

the samples { z i }  in figure 1(a). The estimated distribution of 

the inliers PZ(z|C, aZ) is also superimposed (with a rescaling 

factor to match the maxima). 

III.I.II Using grey level video data n = 2 

When the sequence is grey level, the samples of the variable Z 

can be computed using the backward and forward inter-frame 

differences: 

f Xi : x(1) = It+i(i) - I t ( i )  

                                                                                   1X2 : x(2) = I t( i )  -  I t -i( i )            . . . … (8) 

f Z : zi = |xi1)| + |xi2)| 

Figure 1 (b) shows the distribution of Z in this case. 
 
III.I.III Results 

When comparing images from a video, the interframe 
differences contain outliers due to camera and object motion. 
However in most applications, it can be assumed that a sensible 
proportion of pixels are matching. This proposed scheme for 
standard deviation estimation can be 

 

……(5) 
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+1) = arg min j ^ i p ^x Until convergence 9 ap 

(a) (b) 

 
 

Figure 1: Distribution (z) (blue bars) with the fitted distribution of the 
inliers (z\C, aZ) on real video data for inter-frame difference analysis. 

used on the inter-frame differences in order to separate or 

locate the outliers in the observations. We are considering in 

this example a video recorded from a static camera. Only 

moving objects in the scene generate outliers. By setting a 

threshold using the estimated standard deviation, the moving 

objects are located using the decision rule zi > n 3 a for each 

pixel position i. 
Figure 2 shows an example of the moving object detection 
process. The inter-frame difference is computed between the 
median frame of the video as a model of the background model 
of the scene, and the frame at time t = 100. Segmentation of 
the movement is not perfect as it is only based on the pixel 
statistics. Some pixels from the moving objects have similar 
values as the background ones at the same location, therefore 
their differences are classified as inliers (un-moving regions). 
However, it is a simple method to roughly locate moving 
regions which, in this example, are objects of interest such as 
pedestrians and cars for a traffic surveillance application. A 
result on a grey level sequence is shown in figure 3.  

            

          III.II Application to unsupervised camera motion estimation 

and moving object detection in moving camera sequences 

 

We consider in this section the problem of camera motion 

estimation from video data. Camera motion estimation has 

many applications such as video restoration and content 

analysis [Bouthemy et al., 1999, Kokaram et al., 2003, 

Coldefy et al., 2004]. The motion parameters are 6-

dimensional to take in to  account zoom, ro tation 

and translat ion.  The residuals  {x i } ,  corresponding 

to the displaced frame difference (dfd), are linearly 

depending on the camera motion parameters 9. Figure 5 

shows two successive images in a sequence and their 

difference, respectively before and after camera motion 

compensation. Those two observations correspond to the 

residuals observed at the first and the last iteration of our 

robust estimation. Images of videos used for testing are 

shown in fig. 4. 

 

III.II.I Iterative estimation of the scale and location 
parameters 

For each iteration, we estimate the scale parameter aY on the 

set of residuals and then perform the estimation of the motion 

parameters until convergence: 

Initialisation 9
(0)

 
Repeat : 

Scale estimation on { y i } M  

                                                                         ……(9) 

computed from {xi (9
(m))

} 

 

Figure 2: Colour sequence. Detection of moving objects (in red) 

based on the statistics of the difference of the colour pixels with the 

median image of the sequence (sequence dtneu-winter). 

 

 
Figure 3: Grey-level sequence. Detection of moving objects in 

between successive frames, based on the statistics of the difference of 

grey level pixels. 
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Figure 4: Videos used in the test. (a) is a simple video where the 

camera motion is known, and the dark rectangle is the only (outlier) 

object that moves differently from the background. (b) is a shot from 

an old film where several artifacts occur (blotch, flicker, sporadic 

and severe vertical displacement, etc). 

 

The location parameter estimation is performed using M-

estimation with a robust function p [Dahyot and Kokaram, 

2004]. The initial guess 0
(o)

 is estimated using non-robust least 

squares. 

 

Scale parameter estimation. Using the set of residuals {xi}  

samples of the variable X, we need first to define variable Y 

and to compute its samples. The residuals are a mixture of in- 

liers and outliers as being defined in this article. The 

proportion a of inliers is unknown and the outliers correspond 

to unmatched pixels due, for instance, to moving objects 

(different movement to the camera motion), occlusions or 

artifacts (specially in old films). The outliers form localized 

areas in the dfd (cf. figure 5). Using this property, we draw 

samples of the random variable Y such as yi = ^xf + x|+1 

where xi and xi+1 are two neighbouring residuals in the dfd. 

This strategy allows to preserve a similar proportion of inliers 

in the observations {yi}. Using our estimation scheme with 

histograms for a faster computation, the scale parameter is set 

to ap = 3 x ay. This choice insures that 99% of the inliers are 

kept for the estimation of the camera motion parameters. 

 

Accuracy of the estimates. Using video (a) (cf. figure 4) where 

the ground truth is known, the scale parameter and the motion 

parameters are estimated while adding gaussian noise of 

variances 10 and 100. Compared to the ground truth, the 

motion parameters are estimated with a Mean Square Error 

below 0.00007 on zoom-rotation parameters and 0.05 pixels 

on the translation parameters. The estimated scale parameter 

of the class of inliers is also stable over the sequence: the 

standard error of the estimate ay of one grey level compared to 

the ground truth. 

 

Scale Adaptability. On the video (b) (cf. fig. 4), our 

unsupervised robust camera motion estimation is also 

performed. No ground truth is known, however the estimated 

parameters are coherent with the one with a manually tuned 

estimation. The estimated scale parameter of the inliers in the 

dfd remains constant over 400 frames of the sequence (b). 10 

frames show a slight over-estimation of the scale. Those 

artifacts correspond to sudden changes in the intensity values 

(flicker) that increase the dfd [Kokaram et al., 2003]. The 

automatic SD estimation allows to account for those changes 

in the data stream. The algorithm proposed in (9) has also 

always converged in our experiments undertaken on different 

videos. 
 

III.II.II Moving object detection 

Figure 5 shows an example with two successive images from a 

video of cricket. The images of the residuals are also shown 

before and after motion compensation. The estimated scale ay 

allows taking a decision in between pixels being outlier 

residuals (in black) and pixels being inliers residuals (in 

white). Those binary maps allows the detection of independent 

moving objects in the sequence, and carry relevant 

information, for instance, for video understanding [Coldefy et 

al., 2004]. Our method provides an automatic thresholding 

method that does not require to manually set a threshold over 

the weights as in [Coldefy et al., 2004]. 

 

 
 
Figure 5: Application to camera motion estimation. Top: two 

successive images from a sport video. Middle: corresponding image 

of residuals when the motion is not compensated (left), and when it is 

compensated (right). Bottom: maps of the outliers (residuals above 3 

x aY). 

 



ISSN:2321–7529(Online)|ISSN:2321–7510 (Print)                  International Journal of Research & Technology, Volume 2, Issue 1 

www.ijrt.org   117 

 

IV. FUTURE WORK 

In this article, we proposed an unsupervised method for 

camera motion estimation and moving object detection in 

video. The whole objects are not detected but only its parts 

that generate outliers in the dfd. Future work will aim at 

improving the segmentation of the moving objects by using 

mathematical morphology and/or hysteresis thresholding to 

take into account spatial correlation between neighbouring 

pixels. 
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