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Abstract—Fuzzy Gibbs Random Field (FGRF) models with local 

level processing is a powerful tools to model image characteristics 

accurately and been successfully applied to a large number of 

image processing applications. In This paper we investigate the 

problem of fusion of many types of images, e.g., multispectral 

image fusion, based on FGRF models with local level processing 

incorporates the contextual constraints via FGRF models with 

local level processing into the fusion model. This algorithm is 

applicable to both multiscale decomposition (MD)-based image 

fusion and non-MD-based image fusion. Experimental results are 

provided to demonstrate the improvement of fusion performance 

by our algorithms.  
 

Keywords — Fuzzy Gibbs Random Field, local level processing, 

Multiresolution decomposition, Multispectral image fusion. 

I. INTRODUCTION  

Image fusion is having importance in many image analysis 

works in which image data is obtained from multiple sources 

e.g. multi focus images, multi illuminated images, in medical 

field different types of images having very less part of 

important information can be fused with different category 

image to get more information from single fused image. As 

general the purpose of image fusion is to combine relevant 

information from two or more source images into one single 

image such that the single image contains as much information 

from all the source images as possible. The source images 

involved in such applications can be taken at different times 

and/or using different sensors. On the analysis of result, some 

source images may hiding some part of image and source 

images from different sensors show different physical 

features. Thus, the fused image is to have a more accurate 

description of the scene and is, therefore, more useful for 

human visual or machine perception [1].  

 

In remote sensing applications, there have been a few studies 

on fusing high-resolution panchromatic images and low-

resolution multispectral images to improve the spatial 

resolution [2], [3]. In this paper, we focus on the fusion of 

images having the same resolution, e.g., multispectral image 

fusion. A multispectral band covers only a narrow spectral 

range [3], and different bands represent different aspects of the 

scene. Multispectral image fusion involves the fusion of 

several bands in order to improve spectral resolution. The 

existing image fusion approaches can be classified into three 

categories: pixel-level, feature-level, and decision-level 

[4].This paper is focused on the pixel-level fusion approach.  

 

 

Before image fusion, an image registration algorithm usually 

needs to be applied in order to align the source images [5].  

 

The basic pixel-level fusion rule includes two steps:   

1) Firstly, we need to find out whether a source image 

contributes to the fused image for each pixel. 

2) Secondly, the intensity of the pixel in the fused image is 

obtained from all the contributing source images.  

 

Among the pixel-level fusion rules, two traditional algorithms 

to fusion are to average the pixel intensities from all the source 

images or take the maximal pixel intensity among all the 

source images [25]. The averaging approach is effective in 

removing the Gaussian noise and increases the signal-to-noise 

ratio (SNR) but makes the image smoother and results in the 

loss of contrast information. The maximizing approach can 

produce the fused image at full contrast but is sensitive to 

sensor noise [7]. To overcome the limitations of the averaging 

and maximizing approaches, Sharma et al. [7] proposed a 

Bayesian image fusion approach and related it to local 

principal component analysis.  

 

In recent years, multi scale decomposition (MD)-based 

techniques have been successfully applied to image fusion for 

different applications such as concealed weapon detection [8] 

and hyper spectral image fusion [9]. Different MD methods 

including pyramid transform and discrete wavelet transform 

have been applied to image fusion. The performances of these 

MD-based image fusion approaches are evaluated in [6] for a 

digital camera application. The MD-based image fusion 

approaches consist of three steps: 

1) The source images are first decomposed into several scale 

levels using a pyramid transform or a wavelet transform. 

2) Fusion is then applied at each level of the source images.  

3) Finally, we invert the transform to synthesize the fused 

image [25]. 

 

The MD-based image fusion approach provides both spatial 

and frequency domain localization and achieves much better 

performance while the use of the transform increases the 

computational complexity [25]. So one can choose or not to 

employ transforms on images depending on different 

applications. For the MD-based fusion approaches, the basic 

fusion rule is applied to MD representations of the images at 

each resolution level. For the non-MD-based fusion approach, 
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the basic fusion rule is directly applied to the source images. 

Generally, the main drawback of the pixel-level fusion rule is 

that the decision on whether a source image contributes to the 

fused image is made pixel by pixel and, therefore, may cause 

spatial distortion in the fused image, which affects further 

processing, such as classification and detection. As we know, 

the pixels in an image are spatially correlated. Thus, for a 

source image, if one of its pixels contributes to the fused 

image, its neighbors are also likely to contribute to the fused 

image. It implies that the decision making during the first step 

of the fusion process should exploit the property of spatial 

correlation. Thus, it is important to incorporate spatial 

correlation into the fusion model, and the use of such a fusion 

model is expected to improve fusion performance [25]. 

 

A straightforward approach to make use of spatial correlation 

is to use a window- or region-based method [7], [10]–[13]. 

The idea is to estimate the intensity of a fused pixel from that 

of the source images in a small window. Yang and Blum [11] 

assumed that the decision making of pixels within a small 

window is constant and developed an expectation-

maximization algorithm by employing a Gaussian mixture 

image model to adaptively find the fusion result. Burt and 

Kolczynski [10] proposed a weighted average algorithm to 

estimate the fused image in a pyramid transform domain. The 

weights are measured based on a local energy or variance 

(called “salience”) within a small window. Lozci et al. [12] 

modified the weighted average algorithm by incorporating a 

generalized Gaussian statistical model. Lallier and Farooq [13] 

designed a weighted average scheme for fusing IR and visual 

images in a surveillance scenario. In their algorithm, larger 

weights are assigned to either the warmer or cooler pixels for 

the IR image and to the pixels having larger local variance for 

the visual image. The aforementioned algorithms [10]–[13] 

are used in the MD-based fusion approach. 

 

However, the application of FGRF with local level processing 

models for pixel-level image fusion on images with the same 

resolution has not been considered. In this paper, we propose 

the fusion algorithm by incorporating the contextual 

constraints via FGRF with local level processing models into 

the fusion model. The algorithm models the decision making 

at the first step of the fusion rule as a FGRF, and then the 

algorithm models both the decision making and the true image 

as FGRFs. Also, the algorithm is applicable for both the MD-

based fusion approach and the non-MD-based fusion 

approach.  

 

This paper is organized as follows. In Section II, The 

Literature Review as formulate the image fusion problem 

based on a statistical model. Then, Work By Min Xu, Hao 

Chen And Pramod K. Varshney [25] the MRF-based image 

fusion approach is presented in Section III. In Section IV, 

present proposed fusion approach and section V Result shows 

the comparison with MRF fusion approaches via some 

experiments.  Finally, some concluding remarks are provided 

in Section VI. 

II. LITERATURE REVIEW 

Image fusion is essentially an estimation problem. The 

objective is to estimate the underlying scene, assuming that 

each source image contains a good view of only part of the 

scene [1]. Blum [1] has proposed a statistical model for the 

image fusion problem. Assume that there are N source images 

to fuse. Each source image can be modeled as 

��(�)  =  ��(�) 	(�)  + ��(�), 
 =  1, . . . , �   (1) 

Where, r indicates the spatial coordinates of a pixel, ��(�)  is 

the intensity of the i
th

 source image at r, x(r) is the intensity of 

the true scene at r to be estimated, ��(�)  is the noise, and 

��(�)  is the sensor selectivity coefficient, taking on values 

from Θ = {q1, q2, . . .} representing the percentage of the true 

scene contributing to the i
th

 source image [7]. In our work, we 

use Θ = {0, 1}, which determines if the true scene contributes 

to the ith source image or not [1]. In the following, for 

simplicity of notation, “(r)” is omitted. Note that (1) 

represents the relationship between the source images and the 

true scene. According to this model, if the true scene 

contributes to the source image, the source image is modeled 

as a true scene plus a Gaussian noise. If the true scene does 

not contribute to the source image, the source image is 

modeled as Gaussian noise.  

 

In practice, particularly in multiple sensor applications and 

multifocus applications, this model has some limitations. The 

source images obtained from different sensors sense different 

aspects of the true scene, and this model may be a coarse 

approximation in this case. The image fusion problem 

essentially involves the estimation of ��  and x. The two 

traditional algorithms, namely, the averaging and maximizing 

algorithms, can also be expressed using this model. For the 

averaging algorithm, ��  = 1 for all i. For the maximizing 

algorithm, 

 

��  = 1;
 =  ��	 
 {�
}; ��  = 0, otherwise. 

 

When ��  is given, the pixel intensity of the fused image can be 

easily calculated by a Least Squares (LS) technique as [16] 

	� = (H
T
H)

-1
H

T
Y    (2)

 

Where H denotes the vector [��, �� . . .  ��  ] � and Y denotes 

the vector [��, �� , . . ., ��]�. In practice, we only have the 

source images available without any prior information and the 

coefficient H is usually unknown. According to the LS 

technique, from the set of all possible values that the 

coefficient H can take, the one which produces the highest 

energy should be selected, i.e., 

�� =   min
 

{(! − �#�)$ (! − �#�)} 

 =     min {!$! − (!$�)(�$�)%�((�$!)}     (3) 

=  max
 

 {(!$�)(�$�)%�((�$!)} 
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Note, since Hi ∈ {0, 1} H has 2� possible values. Once H is 

available, the intensity of the fused image at pixel r i.e., is 

obtained by an LS approach [16], which is  

  	� =  (��$��)%���$!.   (4) 

In the aforementioned model, both the coefficient H and the 

intensity of the fused image x at each pixel are estimated pixel 

by pixel, and therefore, it is very sensitive to sensor noise. 

Furthermore, since the estimation of the fused image is based 

on the estimation of the coefficients, the estimation of the 

coefficient H plays an important role in the fusion process. 

The estimation accuracy of the coefficients directly influences 

the estimation of the fused image. Since the coefficient H of a 

pixel is likely to be similar to the coefficients corresponding to 

other pixels in its neighborhood due to spatial correlation, we 

can get better estimates of H by utilizing spatial correlation. 

 

A straightforward and simple approach is to assume that the 

coefficients of pixels within a small window are constant and 

then select the coefficient which produces the highest energy 

of pixels within a small window. This strategy has been used 

in [11]. However, the goal of the LS approach is to minimize 

the data error ||� − ��||�, which does not necessarily lead to a 

small estimation error for either H or x. A popular strategy for 

improving the estimation error of LS is to incorporate prior 

information on H or x [17]. Motivated by this fact and the fact 

that the MRF model for local level processing in the form of 

prior Gibbs distributions is currently the most effective way to 

describe the local behavior of both the intensity field and the 

discontinuity field [20]. 

 

We propose to employ an FGRF model to estimate the 

coefficients at Global level and then MRF model for local 

level processing. It is expected to improve the estimation 

accuracy of the coefficients H, thereby leading to improved 

fusion results. 

 

II.I MRF Model for Image Fusion  

 

The image fusion problem is to estimate the true scene x. 

However, before the estimation of x, there is a need to obtain 

an accurate estimate of H, which represents the decision 

whether the true scene is present in the source image, i.e., 

whether the source image contributes to the fused image. In 

the previous section, we considered the estimation of x and H 

on a pixel level. In this section, there are two MRF-based 

image fusion approaches, which design the estimator by 

incorporating the spatial correlation through the prior 

probability density function (pdf) of H and x. The intensity of 

a fused pixel then depends not only on the intensities of the 

pixel in the source images but also on that of the neighboring 

pixels [25]. In the first algorithm, only the coefficients are 

modeled using an MRF, denoted as MRF_H. In the second 

algorithm, both the coefficients and the fused image are 

modeled using MRFs, denoted as MRF_HX. 

 

Some notations used in this paper are listed as follows: 

• X: the whole true scene (fused image);  

• Hi: the coefficients of the ith source image; 

• Yi: the intensities of the ith source image; 

• H: the coefficients of source images, where H(r, i) = Hi;  

• Y: the intensities of source images, where Y(r, i) = Yi.  

 

The maximum � +,-./0
,0
 (123) criterion is used to find 

the optimal solution for the estimation problem. The 

estimation procedure based on the MAP criterion chooses the 

most likely values of coefficients and the fused image among 

all possible values given the observed source images. The 

resulting probability of error is minimal among all other 

detectors [16]. This criterion is expressed as 

{��, 45}    = arg{ max  ,8[3(4, �|!)]}.    (5) 

However, due to high computational complexity, it is difficult 

to directly obtain the final solution. Note that 3(4, �|!)  =
 3(4|�, !)3(�|!)  =  3(�|4, !)3(4|!). Thus, a suboptimal 

method is adopted by MRF model. To decompose the problem 

(5) into two sub problems and iteratively solve the two sub 

problems 

{��9:�    = arg{ max  [3(�|!, 459)]}. 

{459:�    = arg{ max 8[3(4|!, ��9)]}.   (6) 

 

Where ��9 denotes the nth update of the estimate of H and 459  

denotes the nth update of the estimate of X. The below 

equation shows iteratively update estimates of H and X as: 

 

 P(X=:�, H=:�|Y) ≥  P(X=, H=|Y)       (7) 

 

And, therefore, achieve the optimum at the end. 
 

II.II Fusion Approach: MRF Modeling for Coefficients H 

(MRF_H) 
 

Motivated by the fact that the coefficients of the source 

images exhibit spatial correlation, the model shows the 

coefficient H by an MRF model. Let S be a set of sites in an 

image and Λ ∈  {0, 1, . . . , B −  1} be the phase space. We 

assume that the coefficients H(S) ∈ CD follow MRF properties 

with the Gibbs potential EF(�).  The marginal pdf for H is 

written as [14] 

           3 (�) =  �
GH

/	+ I%�
$ ∑ EFF⊂D (�)K   (8) 

Where ZH is normalization constant given by  

            L =  ∑ exp [%�
$ ∑ EFF⊂D (�)] ∈OP .  (9) 

The estimate of H is given by  

       ��9:� =  arg{ max  [3(�|!, 459)]}.                 (10) 

We apply Bays' rule, which provides the following result: 

3Q�R!, 459S =  T( ,U|85 V)
T(U|85 V) = T(U| ,85 V)T( )

T(U|85 V)           (11) 

And because 3(!|45) is a constant for all the values of H, (10) 

can be written as  
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  ��9:� =  arg{ max  [3(!|�, 459)3(�)]}.   (12) 

 

In the model given in (1), the noise of each source pixel is 

assumed to be an independent and identically 

distributed (
. 
. W. ) Gaussian noise with zero mean and 

variance of σ
2
, and therefore, the conditional pdf of the source 

image Y given H and 459 is given by  

3Q!R�, 459S =  XYZ [%∑ Q[\]  H\ �̂ VS\
_([\]  H\ �̂ V)

`a` ]

(�bc`)
d
`

                    (13) 

Where variable M represents total number of pixels. Then, 

substituting (8) and (13) into (12) and taking the constant term 

out, we obtain  

  ��9:� =  arg{ max  [exp (−p(�))]}.    (14) 

Where  

E(H) =  ∑ Qrs]  tsu�vSs
w(rs]  tsu�v)

�x` + ∑ Uzz⊂{ (H).             (15) 

According to the aforementioned result, we observe that 

maximization in (14) is equivalent to minimization of E (H). 

Thus, the optimal estimate for H can be expressed as  

         ��9:� =  arg{ min  (p(�))}.     (16) 

Note that, for two source images with size 300 ∗ 300, H has a 

total of 490000 possible configurations. Thus, in practice, due 

to the large search space on H, the solution of (16) cannot be 

obtained directly, and therefore, the simulated annealing (SA) 

algorithm [18] is applied here to search for the optimal 

solution of (16). The solution for the second sub-problem, i.e., 

the estimate for X, is obtained by (4).  

 

The iterative algorithm is n described in terms of the following 

steps: 

1) Start with an initial estimate of H and X. Estimate the initial 

parameters (noise variance and some parameters in the pdf of 

H) and set the initial temperature. 

2) At each iteration, obtain a new estimate of H based on the 

Gibbs pdf given in (8) with the Gibbs potential E (H) using a 

Gibbs sampling procedure [14]. 

3) Update the fused image using (4). 

4) Reduce the temperature using a predetermined schedule and 

repeat 2) and 3) until convergence.  

 

Here, the temperature is a parameter which is used to control 

the randomness of the coefficient generator, and we consider 

that the algorithm converges when the two consecutive 

updates are within tolerance of each other. At steps 2) and 3), 

we visit each pixel from left to right and from top to bottom 

when we update the coefficients and the fused image. 

Eventually, the resulting coefficient will converge to the 

solution of (16), and the fused image is simultaneously 

obtained. Compared with the maximizing approach, the 

averaging approach, and the LS approach, the solution of this 

algorithm is obtained through an optimization algorithm, and 

therefore, it increases the computation time.  

 

II.III Fusion Approach: MRF Modeling for Coefficients H and 

Fused Image X (MRF_HX) 
 

In the aforementioned algorithm, the assumption is that the 

coefficients H follow an MRF model. Then, the intensity of 

the fused pixel is estimated by an LS technique. In practice, 

the fused image also has the property of high spatial 

correlation. Thus, assume that the fused image also follows an 

MRF model with a Gibbs potential }~(4). Hence, the 

marginal pdf for X is written as [14]  

38(4) =  �
G^

/	+ I%�
$ ∑ EFF⊂D (4)K    (17) 

Where ZX is normalization constant given by 

L8 =  ∑ /	+8 I− �
$ ∑ }FF⊂D (4)K    (18) 

Under this assumption, the MAP criterion to obtain the 

optimal X is written as 

  459:� =  arg{ max 8[3(4|!, ��9)]}.   (19) 

in a similar manner as for the estimation of ��, (19) reduces to 

  459:� =  arg{ min 
8

(∆(4))}.    (20) 

Where 

∆(4) =  �
�c`  ∑ Q!�% ���

94S�
$ (!�% ���

9) + ∑ }FF⊂D (4)  (21) 

 

II.IV Extension to the MD-Based Fusion Framework 

 

Here, the applicability of the two proposed algorithms to the 

MD-based fusion approach is discussed. For the non-MD 

based fusion approach, Y and H in the data model (1) denote 

the intensities of the source images and their corresponding 

coefficients and X denotes the intensity of the fused image. 

This data model (1) is also applicable for the data after the MD 

process [1], [7]. Thus, if the MD-based fusion approach is 

employed, we assume that the MD transform is applied to the 

source images, Y refers to the values of the MD 

representations of the source images at some resolution level, 

H refers to the corresponding coefficients, and X refers to the 

values of the MD representations of the fused image at the 

same resolution level. Thus, instead of directly applying the 

image fusion model (1) on the source images, one can perform 

the MD on the source images and then apply the image fusion 

model (1) on the MD representations at each resolution level. 

By using multi-resolution transforms such as discrete wavelet 

transform, the source image is decomposed into different 

frequency bands, 

 

 
Figure1 Cliques considered in the eight-neighborhood system [25]. 
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Which makes the model (1) more closely fit the MD 

representations. However, the use of multiresolution 

transforms increases the complexity of the algorithm. It is 

noted that, since the multiresolution transform may result in 

the loss of locality in MRF models for the MD image 

representations [28], i.e., the local MRF property may not hold 

on X, it is not suggested to use the algorithm MRF_HX with 

the MD-based fusion approach. The coefficient H for each 

pixel represents whether the true scene X (fused image) 

contributes to the source image. Pixels in a large area may all 

contribute to the true scene; however, all the pixels in the area 

may not contain the same intensities. Thus, the coefficient H 

has more spatial correlation over a larger area than the 

intensity of the true scene X. After MD transformation, 

coefficients H may still exhibit spatial correlation while MRF 

property may not hold for X. Thus, only the algorithm 

MRF_H is applied in the MD-based fusion approach. In the 

next section, the proposed algorithm is discussed. 
 

III. PROPOSED ALGORITHM 

Before The Fuzzy Gibbs Random Field provides the global 

variable processing to overcome the redundant information 

field from the source image firstly and provide the space for 

more informative field to spread over the entire range. In this 

way FGRF model is a useful tool in image processing and 

after that we apply the MRF model for local level processing 

this combination provides the better result as compared to the 

MRF based image fusion model. Here first we describe the 

Fuzzy Gibbs Random Field. Than we use this FGRF model for 

image processing. After applying the FGRF model we apply 

The MRF model of image fusion and compare the results for 

both the methods.  

A set of random variables F is said to be a Fuzzy Gibbs 

Random Field (FGRF) on S with respect to N if and only if its 

configurations obey a Gibbs distribution A Gibbs distribution 

takes the following form  

             3(�) = L%�exp (%�
$ E(�))                  (22) 

Where 

                  L =  ∑ exp (%�
$ E(�))�∈�        (23) 

 is a normalizing constant called the partition function, T is a 

constant called the temperature  which shall be assumed to be 

1 unless otherwise stated, and E(�)  is the energy 

function. The energy 

         E(�) =  ∑ }F(�)F∈�                     (24) 

is a sum of clique potentials }F(�)   over all possible 

cliques C. The value of  }F(�) depends on the local 

configuration on the clique c. obviously, the Gaussian 

distribution is a special member of this Gibbs distribution 

family. A FGRF is said to be homogeneous if }F(�) is 

independent of the relative position of the clique c in S.  It is 

said to be isotropic if }F is independent of the orientation of c.  

It is considerably simpler to specify a FGRF distribution if it is 

homogeneous or isotropic than one without such properties. 

The homogeneity is assumed in most MRF vision models for 

mathematical and computational convenience. The isotropy is 

a property of direction-independent blob-like regions. 

 

To calculate a Gibbs distribution, it is necessary to evaluate 

the partition function Z which is the sum over all possible 

configurations in F. Since there are a combinatorial number of 

elements in F for a discrete L, the evaluation is prohibitive 

even for problems of moderate sizes. Several Approximation 

methods exist for solving this problem. 3(�) Measures the 

probability of the occurrence of a particular configuration, or 

``pattern'', f. The more probable configurations are those with 

lower energies. The temperature T controls the sharpness of 

the distribution. When the temperature is high, all 

configurations tend to be equally distributed. Near the zero 

temperature, the distribution concentrates around the global 

energy minima. Given T and E(�), we can generate a class of 

``patterns'' by sampling the configuration space F according 

to 3(�). For discrete labelling problems, a clique 

potential }F(�) can be specified by a number of parameters. 

For example, letting �F = ( �������")  be the local configuration 

on a triple-clique ~ = ( 
�, 
�, 
′′), �F takes a finite number of 

states and therefore}F(�)  takes a finite number of values. The 

continuous labelling problems �F  can vary continuously. In 

this case, }F(�) is a (possibly piecewise) continuous function 

of  �F . 

 

Sometimes, it may be convenient to express the energy of a 

Gibbs distribution as the sum of several terms, each ascribed 

to cliques of a certain size, that is, 

 
E(�) =
∑ }�(��) +[�]∈F�  ∑ }�(�� , ���) +[�,��]∈F` ∑ }�(�� , ���, ��") +[�,��,�"]∈F�  .(25) 

The above implies a homogeneous Gibbs 

distribution because }�, }�and }� are independent of the 

locations of 
,  
′ ��W 
" for non-homogeneous Gibbs 

distributions, the clique functions should be written 

as }� (
, ��), }� (
, 
�, ��), ���) and so on. 

 

An important special case is when only cliques of size up to 

two are considered. In this case, the energy can also be written 

as 

E(�) =   ∑ }�(��) +�∈D  ∑ ∑ }�(�� , ���)��∈�\  �∈D   (26) 

Note that in the second term on the RHS, {i, i'} and {i', i} are 

two distinct cliques in �� because the sites in a clique 

are ordered. The Conditional probability can be written as 

3Q��R��\S =  �]I��Q�\S�∑ �`Q�\,�\�S\�∈�\ K

∑ �]I��Q�\S�∑ �`Q�\,�\�S\�∈�\ K
�\∈�

   (27) 

 
III.I Choice of MRF Models for local level processing  

 

We provide the examples to evaluate the fusion performance 

of our fusion algorithms. For the MRF-based fusion 

algorithms, MRF_HX, used in the experiments, we consider 
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five clique types in the eight neighborhood system: C1, C2, 

C3, C4, C5, associated with the singleton, vertical pairs, 

horizontal pairs, left-diagonal pairs, and right-diagonal pairs, 

respectively. They are shown in Fig. 1. The Gibbs energy 

function of the coefficient of the source image is defined by an 

auto logistic function, given by [14] 

               ∑ EFF⊂D (�) =  �$B                  (28) 

where a= [��, … … . . ��] is the paramter vector of the 

coefficient H and  

B = �∑ �[�(-), �(.)], … ,(�,�)∈�`    ∑ �[�(-), �(.)] (�,�)∈�� �(29) 

�(�, �) = -1,   if a=b            (30) 

I(a,b) = 1,   otherwise. 

Due to its simplicity, this class of MRF model has been 

extensively used in [14], [20]–[22] for modelling a wide 

variety of images, both as region formation models and as 

texture models. Furthermore, we use a Gaussian MRF model 

to represent the Gibbs energy function of the fused image, 

which is given by 

 ∑ }F(4)(F∈D =  �
� (4(-) − 3$�)�          (31) 

Where p = [+2, . . . , +5] is the parameter vector of the image 

model and its potential vector G is defined as 

� =  �∑ 4(.), … ,(�,�)∈�`    ∑ 4(.) (�,�)∈�� �.                (32) 

For simplicity, we choose p = [0.333, 0.333, 0.1667, 0.1667] 

in our experiments. The Gaussian MRF model is widely used 

for modeling image texture [14]. Under this model, the 

analytical solution for (20) can be easily derived by: 

 

                          
�∆(8)

�8 = 0.           (33) 

Substituting (13) and (25) into (27), it yields 

  459:� = Q1 + ∑ �9
�
$

� ��
9/ �S%�Q3$� + ∑ �9

�
$

� !�/ �S  

     (34) 

The estimate given by (28) for one pixel involves vector 

multiplication, which has the computational complexity O(N). 

Thus, the estimation of the whole fused image has the 

computational complexity ¡(1 ∗  �). 

 

III.II Parameter estimation 

Modelling the Markov pdf parametrically involves the data 

driven optimal estimation of the parameters associated with 

the potential functions}F. The model parameters must be 

estimated for each data set as part of the image processing 

algorithm. In our algorithms, the noise variance σ2 in (13) and 

the parameter a in the coefficient MRF pdf in (22) are 

unknown. Thus, we need to estimate these parameters in our 

algorithms. Because we assume that the noise in the fusion 

model is a Gaussian noise, it is straightforward to estimate the 

noise variance by the maximum likelihood (ML) criterion. It is 

given by 

 � =     �0¢��	3(!|�, 4,  �) 

                    =   
�

£� ∑ (!�% ��4)�
$ (!�%  ��4).    (35) 

The direct ML estimation of the parameters associated with 

the pdf of H is known to be a difficult problem [32]. The ML 

estimate of a is  

 �� = �0¢ max¤(�, �)  =   arg min¤ }F(�, �) − ¥�L  (36) 

The potential function }~ (�, �) can be simply computed. 

However, the normalization term Lt involves a summation 

over all possible configurations of H, which is practically 

impossible due to the large computation time. Note that, for 

two source images with size 300 * 300, H has a total of 

490000 possible configurations. An alternative method for 

approximation to ML estimation is maximum pseudo 

likelihood (MPL) estimation, which was proposed by Besag 

[23]. The MPL estimation method is a suboptimal method, 

which is given by 

 ��  = �0¢ max¤ ∏ 3(�(-), �)�   

      = �0¢ min¤ ∑ }F(�(-), �) − ¥�L (�)� .    (37) 

The differences among the fused results are usually difficult to 

be measured only based on observation, particularly when the 

fused images are multiband. Objective and quantitative 

analysis can benefit to a comprehensive evaluation. Various 

image quality indices have been developed for the purpose of 

image fusion [28]–[21]. Some of these indices validate the 

spatial resolution, while others focus on the spectral properties 

of the obtained fused result. In this paper, we employ three 

such indices. 

1) SNR: The SNR in decibels, is a direct index to compare 

the fused image to the reference one [26]. For multiband 

images, it can be calculated band-by-band and also 

globally averaged  

§�¨ QL , L©S = 10¥,¢�ª
∑ G`

∑(G%G5)`   (38) 
2) Spectral angle Mapper (SAM): The averaged SAM is 

used as a measurement of spectral distortion between the 

fused and reference HS images [26]. The SAM of two 

spectral vectors (Zn and ˆZn) at a given spatial position n 

is defined as 

§21QL9 , L©9S = arccos ¬ 〈GV,G5V〉
||GV||` .||G5V||`

¯  (39) 

It can be measured in either degrees or radians. This value is 

averaged over all pixels of the image. The  smaller the value 

of SAM, lesser is the spectral distortion. In this paper, we 

measure the SAM in degrees. 

1) Universal image quality index (UIQI): A UIQI [22] has 

been widely used for image similarity evaluation and was 

also applied to validate fusion techniques [21]. UIQI of 

two images (A and B) is defined as 

 ° =  ±c²³´²´µ
Qc²

`:c³
`SQ´²

` :´³
` S    =     c²³ 

c²c³
. �´²´µ

´²
` :´³

` . �c²c³
c²

`:c³
` .     (40) 

This quality index models any distortion as a combination of 

three different factors: loss of correlation, luminance 

distortion, and contrast distortion. The dynamic range of Q is 

[−1, 1], and the best value 1 is obtained if A = B. When 
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applying this index to a multiband image, it is applied band-

by-band and averaged over all bands. [26]  

III.III Match and silence measure 

In pattern-selective fusion the composite image is assembled 

from selected component patterns of the source images. In the 

pyramid implementation, the pyramid basis functions serve as 

the component patterns. Here we define two distinct modes of 

combination: selection and averaging. At sample locations 

where the source images are distinctly different, the 

combination process selects the most salient component 

pattern from the source pyramids and copies it to the 

composite pyramid, while discarding less salient patterns. But 

at sample locations where the source images are similar, the 

process averages the source patterns. Again, selection avoids 

double exposure artefacts in the composite. Averaging reduces 

noise and provides stability where source images contain the 

same pattern information. Gradient pyramid basis functions. 

Pattern selective image fusion is guided by two measures: a 

match measure that determines the mode of combination at 

each sample position (selection or averaging), and salience 

measures that determine which source pattern is chosen in the 

selection mode.  

 

Salience measure: The salience of a particular component 

pattern is high if that pattern plays a role in representing 

important information in a scene. Salience is low if the pattern 

represents unimportant information, or, particularly, if it 

represents corrupted image data. Specific measures of salience 

may be based on criteria for the vision task at hand. In general 

a pattern may be expected to be important if it is relatively 

prominent in the image. Thus the amplitude of a pattern can be 

taken as a generic measure of its salience. Alternatively, the 

contrast of the component pattern with neighbouring patterns 

can provide that measure [27]. We define salience at sample 

�¶  as a local energy, or variance, within neighborhood p:  

§·(�, �, ¸, ¥ )  =  ∑ +(�¶, ��)¹·(� + �¶, � + ��, ¸, ¥)�
º¶ ,9�  (41) 

In practice the neighborhood p is small, typically including 

only the sample itself (point case) or a 3 by 3 or 5 by 5 array 

of samples centred on the sample (area case). 

 

Match measure: The match measure is used to determine 

which of the two combination modes to use at each sample 

position, selection or averaging. The relative amplitudes of 

corresponding patterns in the two source pyramids can be used 

as a measure of their similarity, or match. Alternatively, the 

correlation between pyramids in the neighborhood of the 

source patterns can provide that measure [27]. Here we define 

the match at sample �¶  as a local normalized correlation within 

neighborhood p:  

1»¼(º½½½¾) =  � ∑ ¿(º́,9́)Á²(º½½½¾:º́9́)Á(º½½½¾:º́9́)Ấ,V́
D²(º½½½¾):D³(º½½½¾)     (42) 

Again, the neighborhood p may include only the given 

component pattern (point case) or it may include a local array 

of components (area case). MAE has value 1 for identical 

patterns, value -1 for patterns that are identical except that 

they have opposite sign, and a value between -1 and 1 for all 

other patters. Unlike the usual definition of normalized 

correlation, it has a value less than 1 for patterns that are 

identical except for a scale factor. In the next section, some 

examples are provided for illustration. 

 

IV. RESULT 

 

We have presented a general approach to image fusion and 

have shown that it can be applied to diverse fusion tasks. 

Fusion is performed in a pyramid transform domain. The 

implementation described here extends prior algorithms in two 

important respects. First, a measure of pattern match has been 

introduced to control the mode used in image combination, 

selection or averaging. Second, both this match measure and 

the salience measures of past implementations are now 

defined as functions of the neighborhood of each pyramid 

sample rather than functions of only the sample itself. The 

neighborhood size can be small, 3 by 3 in the examples shown 

here. These modifications address problems that are 

encountered with past implementations of pyramid-based 

fusion. 

Example-1: MULTI EXPOSURE IMAGE FUSION:  

 
Figure: 2. (a) Original Image of Office with less exposure (b) Original image 

of Office with High Exposure (c) Fused Image by MRF method (d) Fused 

Image by Proposed Method. 

 

TABLE-1: FOR MULTI EXPOSURE IMAGES FUSION 

 
Method Mean Variance 

(%) 

SNR UIQI 

MRF 

METHOD 

0.3781 2.51   8.2547 1.4299 

PROPOSED 

METHOD  

0.5223  5.59   7.5762 2.1336 

 

(a) 

(d) (c) 

(b) 
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Graph-1: Graph Shows parameter for image of Office 

 

In particular they provide greater shift invariance and 

immunity to video noise, and they provide at least a partial 

solution to the problem of combining components that have 

roughly equal salience but opposite contrast: mismatched 

patterns always are handled through selection, never 

averaging. The fusion algorithm was found to perform well 

(based on visual inspection) for a range of tasks without 

requiring adjustment of the algorithm parameters. In fact, 

results were remarkably insensitive to changes in these image 

fused by using MRF model and our Proposed FGRF with 

images, medical field images by different sensors and also 

take general images to show the fusion mechanism. This 

comparison is showing the results give better visual quality in 

our proposed model. 
 

Example-2: MULTI FOCUS IMAGE FUSION 

 

 
Figure: 3. (a) Original Image with Focus on human body (b) 

Original image with Focus on background (c) Fused Image by 

MRF method (d) Fused Image by Proposed Method. 
 

TABLE-2: FOR MULTI EXPOSURE IMAGE FOCUSED IMAGES 

Method Mean Variance (%) SNR UIQI 

MRF 

METHOD 

0.4142 1.84 10.1351 4.9480 

PROPOSED  0.5775 5.41 9.7291 8.4762 

 

 
Graph-2: Graph Shows parameter variation for image of Human body 

 

Example-3: CT SCANE AND MRI IMAGE FUSION 

 
Figure: 4. (a) Original CT Scan Image of human Brain top 

view  (b) Original MRI Image of human Brain (same part) top 

view  (c) Fused Image by MRF method (d) Fused Image by 

Proposed Method. 
 

TABLE-3: FOR CT SCANE AND MRI IMAGE FUSION 

Method Mean Variance 

(%) 

SNR UIQI 

MRF 

METHOD 

    0.2713 3.61     4.8277 1.7528 

PROPOSED     0.4089 9.01     4.6262  2.7690 

 

 
 

Graph-3: Graph Shows parameter variation for Image of human Brain 
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Example-4: DIFFERENT IMAGE FUSION CONTAINING 

DIFFERENT INFORMATION 

 

 
Figure: 5. (a) Original Image of carpet  (b) Original Image of 

files (c) Fused Image by MRF method (d) Fused Image by 

Proposed Method. 

 

TABLE-4: For different image fusion containing different 

information. 
  

Method Mean Variance 

(%) 

SNR UIQI 

MRF 

METHOD 

0.4933 3.25  9.2891    2.3730   

PROPOSED 0.6107 7.85  9.2463     3.6888 

 

 
Graph-4: Graph Shows parameter variation 

 

V. CONCLUSION 

 

In this paper, we have studied the image fusion problem based 

on a statistical model. We utilized the fact that decision 

making in the fusion process has significant correlation within 

its neighborhood and assumed that it can be modelled as a 

FGRF with local level processing. Based on that, a new 

statistical fusion algorithm, namely, FGRF_HX has been 

proposed. This approach is applicable for MD-based fusion 

approaches. In particular, when the raw source images are 

directly used for fusion without pre-processing, the fused 

image can also be modelled as an FGRF with local level 

processing, and then, the fusion result can be obtained using 

the MAP criterion incorporating the a priori Gibbs 

distribution of the fused image. Visual inspection and 

quantitative performance evaluation both demonstrate that the 

employment of the FGRF with local level processing model in 

the fusion approaches resulted in a better fusion performance 

than the traditional fusion approaches. In our proposed image 

fusion algorithms, we assumed a simple relationship between 

each source image and the true scene, i.e., a source image 

either contributes to the fused image or does not contribute to 

the fused image. Thus, it results in a mismatch between the 

fusion model and the real image data set. To improve this, one 

can assume that the coefficient in the data model can take any 

real value, which may increase the accuracy of the fusion 

algorithms [25]. In addition, in the developed image fusion 

algorithms, we assumed that the noise in the source image is 

an 
. 
. W. Gaussian noise. Since this is a rather limiting 

assumption, if we can build the noise model to include non-

Gaussian distortion or possibly correlated Gaussian mixture 

distortion, this model should be closer to realistic sensor 

images and the estimation of fused image may improve. 

However, the FGRF with local level processing modelling of 

the coefficient in the image model is a good model to describe 

the fusion process, which improves the fusion performance. In 

recent years, other optimization algorithms such as the graph-

cut-based approach [19] have become very popular, and they 

can find the solution in a more computationally efficient 

manner than the SA optimization algorithm. The use of 

optimization algorithms such as the graph-cut-based 

optimization approach will be investigated in the future to 

improve the efficiency of the fusion algorithm. 
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