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Abstract— In this thesis, image compression utilizing visual 

redundancy is investigated. Inspired by recent advancements in 

image inpainting techniques, we propose an image compression 

framework towards visual quality with pixel-wise fidelity. In this 

work, an original image is analyzed at the encoder side so that 

parts of the image are intentionally and automatically skipped. 

Instead of some information is extracted from these skipped 

regions and delivered to the decoder as assistant information in 

the compressed manner. The delivered assistant information 

plays a main role in the proposed work because it provides guide 

lines to image inpainting with restoration to restore these regions 

accurately at the decoder side. Moreover, to fully take advantage 

of the assistant information, a compression-oriented edge-based 

inpainting with restoration algorithm is proposed for image 

compression, integrating pixel-wise structure propagation and 

patch-wise texture synthesis. We also construct a practical system 

to verify the effectiveness of the compression approach in which 

edge map serves as assistant information and the edge extraction 

and region removal approaches are developed accordingly. Our 

proposed method is a promising exploration towards image and 

video compression. 

 
Keywords — Fuzzy Gibbs Random Field, local level processing, 

Multiresolution decomposition, Multispectral image fusion. 

I. INTRODUCTION  

The objective of image compression is to reduce irrelevance 

and redundancy of the image data in order to be able to store 

or transmit data in an efficient form. Besides statistical 

redundancy, visual redundancy in videos and images has also 

been considered in several works. They are motivated by the 

generally accepted fact that minimizing overall pixel-wise 

distortion, such as mean square error (MSE), is not able to 

guarantee good perceptual quality of reconstructed visual 

objects, especially in low bit-rate scenarios. Thus, the human 

vision system (HVS) has been incorporated into compression 

schemes in [1] and [2], trying to remove some visual 

redundancy and to improve coding efficiency as well as visual 

quality. Moreover, attempts have been made to develop 

compression techniques by identifying and utilizing features 

within images to achieve high coding efficiency. These kinds 

of coding approaches are categorized as “second-generation” 

techniques in [3], and have raised a lot of interest due to the 

potential of high compression performance. Nevertheless, 

taking the segmentation- based coding method as an example, 

the development of these coding schemes is greatly influenced 

by the availability as well as effectiveness of appropriate 

image analysis algorithms, such as edge detection, 

segmentation, and texture modeling tools. Recently, 

technologies in computer vision as well as computer. Graphics 

have shown remarkable progress in hallucinating pictures of 

good perceptual quality. 

 

The best image quality at a given bit-rate (or compression 

rate) is the main goal of image compression. Images require 

much storage space, large transmission bandwidth and long 

transmission time.  Currently, there is only one way to 

improve resource requirements are to compress images, such 

that they can be transmitted quicker and then decompressed by 

the receiver. In Image compression, many applications want a 

representation of the image with minimal storage. In general, 

the representation of digital image requires a large memory. 

The greater the size of a particular image, the greater the 

memory it needs. On the other hand, most images contain 

duplicate data. There are two duplicated parts of data in the 

image. The first is the existence of a pixel that has the same 

intensity as its neighboring pixels. These duplicated pixels 

waste more storage space. The second is that the image 

contains many repeated sections (regions). These identical 

sections do not need to be encoded many times to avoid 

redundancies and, therefore, we need an image compression to 

minimize the memory requirement in representing a digital 

image.  

Redundancy reduction is aimed at removing duplication in the 

image. According to Saha there are two different types of 

redundancy relevant to images: (i) Spatial Redundancy: 

Correlation between neighbouring pixels. (ii) Spectral 

Redundancy: Correlation between different colour planes and 

spectral bands. Where there is high correlation, there is also 

high redundancy, so it may not be necessary to record the data 

for every pixel. There are two parts to the compression, Find 

image data properties; grey-level histogram, image entropy, 

correlation functions etc. Find an appropriate compression 

technique for an image of those properties.  

II. LITERATURE REVIEW 

 

Dong Liu, Xiaoyan Sun Feng Wu, Shipeng Li, and Ya-Qin 

Zhang [36] said in their paper that an image coding framework 

in which currently developed vision techniques are 

incorporated with traditional transform-based coding methods 

to exploit visual redundancy in images. In this scheme, some 

regions are intentionally and automatically removed at the 

encoder and are restored naturally by image inpainting at the 

decoder. In addition, binary edge information consisting of 

lines of one-pixel width is extracted at the encoder and 
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delivered to the decoder to help restoration. Techniques, 

including edge thinning and exemplar selection are proposed, 

and an edge-based inpainting method is presented in which 

distance-related structure propagation is proposed to recover 

salient structures, followed by texture synthesis. The basic 

idea of this paper has been discussed in our conference papers 

[31] and [32]. However, some problems have not been 

investigated carefully in those papers, including questions 

such as why the edges of image are selected as assistant 

information, or how to select the exemplar   blocks 

automatically, and so on.  

 

The word inpainting was initially invented by museum or art 

restoration workers. It is first introduced into digital image 

processing by Bertalmio et al. [15], where a third order partial 

differential equation (PDE) model is used to recover missing 

regions by smoothly propagating information from the 

surrounding areas in isotopic directions. Subsequently, more 

models are introduced and investigated in image inpainting, 

e.g., total variation (TV) model [16], coupled second order 

PDE model taking into account the gradient orientations [17], 

curvature-driven diffusion (CDD) model [18], and so on. All 

these approaches work at pixel level and are good at 

recovering small flaws and thin structures. Additionally, 

exemplar-based approaches have been proposed to generate 

textural coarseness; by augmenting texture synthesis with 

certain automatic guidance, edge sharpness and structure 

continuity can also be preserved [19]–[21]. Combining PDE 

diffusion and exemplar- based synthesis presents more 

encouraging inpainting results in [24]–[26]. Moreover, 

inpainting capability is further improved by simple human 

interactions when human knowledge is borrowed to imagine 

what unknown regions should be, so that the restoration 

results look natural to viewers [22], [23].  

 

 Due to its potential in image recovery, image inpainting 

likewise provides current transform-based coding schemes 

another way to utilize visual redundancy in addition to those 

that have been done in [1]–[3]. This inference has been 

successfully exemplified in error concealment when 

compressed visual data is transmitted over error-prone 

channels [26], [27]. Moreover, it has been reported that 

improvement is achieved by employing image inpainting 

techniques in image compression even though in a 

straightforward fashion [26]. Besides, image compression also 

brings new opportunities to image inpainting, as we have 

pointed out in [32]. Since the complete source images are 

available, many kinds of assistant information can be extracted 

to help inpainting deal with complex regions that contain 

structures or other features and which are unable to be 

properly inferred from the surroundings. Thus, inpainting here 

becomes a guided optimization for visual quality instead of a 

blind optimization for image restoration. Accordingly, new 

inpainting techniques may be developed to better serve image 

compression. 

 

When image inpainting and image compression are jointly 

considered in an integrated coding system, two main problems 

need to be addressed. The first: What should be extracted from 

a source image as assistant information to represent important 

visual information? The second: How to reconstruct an image 

with this assistant information? On the one hand, it has been 

reported that using different image analyzers, various kinds of 

assistant information can be extracted, including edge, object, 

sketch [5], epitome [29], [30], and so on, to represent an image 

or portion of an image. Then, given a specific kind of assistant 

information, the corresponding restoration method should be 

developed to complete a desired reconstruction by making full 

use of it. On the other, from the compression point of view, 

the effectiveness of restoration methods as well as the 

efficiency of the compression of assistant information would 

also influence the choice of assistant information. Such 

dependency makes the problems more complicated. 

 
S. D. Rane, G. Sapiro, and M. Bertalmio, in their paper 
“Structure and texture filling-in of missing image blocks in 
wireless transmission and compression applications,” and W. 
Zeng and B. Liu, in their paper “Geometric-structure-based 
error concealment with novel applications in block-based low-
bit-rate coding,” has given a framework of image compression 
scheme in which the basic idea of “encoder removes whereas 
decoder restores” has been mentioned in literature for image 
compression [26], [28], we would like to point out the novelties 
of our proposed method here.  

First, in our approach, the original image is not simply 
partitioned into two parts: one is coded by conventional 
transform-based approach, and the other is skipped during 
encoding and restored during decoding. Instead, techniques for 
image partition, block removal, and restoration in our proposed 
scheme are carefully designed towards compression rather than 
straightforward adoption. Furthermore, skipped regions will 
not be completely dropped at the encoder side if they contain 
portion of information that is difficult to be properly recovered 
by conventional image inpainting methods. In fact, assistant 
information is extracted from the skipped regions to guide the 
restoration process and further induce new inpainting 
techniques. 

III IMAGE COMPRESSION WITH EDGE-BASED 

INPAINTING 

 

The original image is not simply partitioned into two parts: 

one is coded by conventional transform-based approach [36], 

and the other is skipped during encoding and restored during 

decoding. Instead, techniques for image partition, block 

removal, and restoration in our proposed scheme are carefully 

designed towards compression rather than straightforward 

adoption. Furthermore, skipped regions will not be completely 

dropped at the encoder side if they contain portion of 

information that is difficult to be properly recovered by 

conventional image inpainting methods. In fact, assistant 

information is extracted from the skipped regions to guide the 

restoration process and further induce new inpainting 

techniques. The framework of compression scheme is depicted 
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in Fig. 1. In this scheme, an original image is first analyzed at 

the encoder side.  

 

The “image analysis” module automatically preserves partial 

image regions as exemplars and sends them to the “exemplar 

encoder” module for compression using conventional 

approaches. Meanwhile, it extracts designated information 

from skipped regions as assistant information and sends it to 

the “assistant info encoder” module. Then, the coded 

exemplars and coded assistant information are banded together 

to form final compressed data of this image. Correspondingly, 

at the decoder side, exemplars and assistant information are 

first decoded and reconstructed. Then, the regions skipped at 

the encoder are restored by image inpainting based on the 

twofold information. At the end, the restored regions are 

combined with the decoded exemplar regions to present the 

entire reconstructed image [36]. 

Fig. 1 shows a general framework of the proposed 

compression scheme that does not constrain which kind of 

assistant information should be used there. Since source image 

is always available at the encoder side, there are many choices 

of assistant information extracted from the skipped regions, 

e.g., semantic object, visual pattern, complete structure, simple 

edges, and so on. Here we start from the mathematical models 

in image. 

 

Figure: 1. Framework of the image compression scheme [36]. 

 

 

Figure: 2. Illustration of image inpainting, in which the gray region is to be, 

restored [36]. 

 

Inpainting to discuss what on earth the assistant information 

should be. As shown in Fig. 2 suppose that we are given an 

image function f(x),� ∈ �, where � is a square region in R
2
 .Ω, 

depicted as the gray region in Fig. 3.2, is an open bounded 

subset of I with Lipschitz continuous boundary. It is just the 

region to be restored by image compression, image inpainting, 

or a combination of them. This restoration problem can be 

generalized as 

 

arg min�� D�fΩ�x� − f�Ω�x�dx� + λR
Ω

�        (1) 

 

Here, fΩ�x� is the original image function in Ω, where it 

should satisfy fΩ�x� = f�x�for any � ∈ Ω. ��Ω��� is a 

reconstruction of �Ω��� at decoder. λ is a Lagrange factor. 

Clearly, (1) is to find the optimal function ��Ω��� by 

minimizing the joint cost consisting of reconstructed distortion 

D() and coding bits R for Ω .Thus, image compression and 

image inpainting can be viewed as two extreme cases of (1). 

Specifically, in traditional image compression, �Ω��� is 

directly coded and sent to the decoder, where many bits may 

be needed to represent �Ω���; whereas in image inpainting, 

there is no bit to represent �Ω��� since ��Ω��� is inferred from 

� �
Ω

���.However, our proposed method, which is quite different 

from compression or inpainting, can be granted as a 

combination of them. In typical inpainting scenarios, the 

restoration �Ω��� of is usually an ill-posed problem because 

information in Ω is totally unknown. Fortunately, an image is 

a 2-D projection of the 3-D real world. The lost region often 

has similar statistic, geometric and surface reflectivity 

regularities as those in the surroundings. It makes the above 

ill-posed problem possible to be solved. Therefore, some 

models are introduced in image inpainting to characterize 

statistic, geometric and surface regularities. These models 

should employ generic regularities, rather than rely on a 

specific class of images so that model-based inpainting can be 

applied in generic images. One such model, TV model, is 

presented in [16] for image inpainting, in which the variation 

regularity is first introduced. Since local statistical correlation 

usually plays an more important role than the global one, as 

shown in Fig. 2, B instead of 
�
Ω

 is used to infer the regularities 

in Ω, where B is a band around Ω. Then, the TV model is to 

find a function ��Ω��� on the extended inpainting region B ∪ Ω 

such that it minimizes the following energy function: 

 

���  !" #� $∇��Ω���$&� + ' � $��Ω��� − ����$(&�))∪Ω *        (2) 

 

The first term in (2) is to measure local homogeneity of image 

function in the region B ∪ Ω, and the second term, called as 

fidelity term, is the sum of squared difference (SSD) between 

the reconstructed B in ��Ω��� and the original B in ����. 

Equation (2) can be solved by the Euler–Lagrange method 

described in [16]. Accordingly, TV inpainting is good at 

restoring homogenous regions. But, if the lost region contains 

rich structures, it does not work well, especially when 

structures are separated far apart by the lost region. To solve 

it, another parameter is introduced in the inpainting model 

[17]. Let + be the vector field of normalized gradient of ����. 
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+,Ω is the corresponding parameter to be restored on Ω.With 

the new parameter of gradient directions, the inpainting 

problem is posed as extending the pair of functions(�, +) on B 

to a pair of functions ���Ω, +,Ω� on Ω. It is completed by 

minimizing the following function:  

  

���  !" #� $&!.+,Ω���$/� + 0$∇1 ∗ ��Ω���$&� +)∪Ω
3 � #$∇��Ω���$ − +,Ω���. ∇��Ω���* &�)∪Ω *       (3) 

The first term presents smooth continuation demand on+,Ω, 

where a and b are positive constants, and k is a smoothing 

kernel. It is the integral of the divergence (in L
p
 function 

space) of the vector field +,Ω, with respect to the gradients of 

the smoothed ��Ω���.The second term is an constraint between 

+,Ω and ��Ω���, where 3 is a positive weighing factor. +,Ω 

Should be related to ��Ω��� by trying to impose +,Ω. ∇��Ω =
$∇��Ω$.The use of the vector field + is the main point of the 

model given in (3). Thus, it enables image inpainting to 

restore missing regions by continuing both the geometric and 

photometric regularities of images. However, the model in (3) 

assumes that the parameter +,Ω can be inferred from +  under a 

certain smooth constraint. But this assumption is not always 

true for nature images. Taking Fig. 2 as an example, the area 

to be restored consists of two homogenous regions divided by 

an edge denoted by the solid curve. The dashed curve is the 

inferred edge in Ω according to (3), which is quite different 

from the actual one. This problem is hard to be solved in 

conventional inpainting scenarios even using human 

intelligence as proposed in [23]. Therefore, in our proposed 

coding framework, assistant information should be used to 

correctly infer +,Ω on Ω.As we have discussed, +,Ω is the vector 

field of normalized gradient and is independent from the 

absolute magnitudes of gradients. It contains two parts of 

information: where +,Ω exists and what its direction is. 

Commonly, it can be simply represented by binary edges of 

one-pixel width for the purpose of efficient compression. 

Consequently, edge information is selected as assistant 

information for image inpainting in this paper. With assistant 

information, we could remove more regions in an image. 

Thus, it greatly enhances the compression power of our 

method. Since edges are low-level features in image, there are 

some mature tools available to automatically track them in an 

image. Moreover, edge information is concise and easy to 

describe in compressed fashion. Therefore, the employment of 

edge information can, on the one hand, help preserving good 

visual quality of the reconstructed image. On the other, it 

enables high compression performance by removing some 

structural regions and efficiently coding edge information. In 

the following two sections, we will explain the modules in our 

framework in detail, especially on the two most important 

modules, namely image analysis and assisted image 

inpainting. Here, we would like to emphasize that the 

introduction of assistant edge information raises different 

demands on both the encoder and decoder.  

 

III.I EDGE EXTRACTION AND EXEMPLAR SELECTION 

 

The image analysis module at the encoder side consists of two 

sub-modules: The first is to extract edge information from 

image and the second is to select exemplar and skipped 

regions at block level according to available edge information. 

They are discussed in the following two subsections. 

 

A. Edge Extraction 

As discussed in previous Section, edge information plays an 

important role in the proposed coding scheme. It assists the 

encoder to select exemplar and skipped regions and the 

decoder to restore skipped regions with our proposed edge-

based inpainting. Extracted edges do not need to represent 

complete and continuous topological properties of an image 

because our purpose is not to segment or restore an object. 

Discontinuous edges can likewise play the role of assistant 

information in the proposed scheme. But taking the 

topological properties into account in edge extraction will 

make edges more meaningful in terms of low-level vision. 

 

Therefore, though there are many mature tools available to 

extract edges from images, the topology-based algorithm 

presented in [33] is adopted in our system to extract assistant 

information. The algorithm presents good results especially on 

extracting intersection edges. According to this method, an 

input image is first smoothed by a two-dimensional isotropic 

Gaussian filter so as to avoid noise. Second, |∇f�x�| and θ are 

calculated on the filtered image for each pixel x. If |∇f�x�| is 
the local maximum gradient along the direction θ and larger 

than a threshold, then pixel x belongs to an edge. At last, the 

pixels with non-maximum gradients are checked by spatially- 

adapted thresholds to prevent missing edges caused by the 

unreliable estimation of θ, edges extracted with the above 

algorithm (or most of the existing methods as well) are often 

of more than one-pixel width. This causes ambiguous 

directions in guiding the restoration at the decoder side and 

also increases the number of bits to code the edge information. 

Although [33] also proposes a thinning method, it does not 

satisfy the special requirement in our proposed edge-based 

inpainting. 

 

It is because that pixel values on edges are not coded but 

rather inferred from connected surrounding edges in our 

proposed scheme. Thus, a new thinning method is proposed 

here by taking into account the consistence of pixel values on 

edges as well as the smoothness of edges. Here, we present the 

details of our proposed thinning method. Complying with the 

terminologies defined in Section II, our goal is to find a one-

pixel-width line which contains N pixels, i.e., f(xn)for 

n=1,2…,N, yielding the minimal energy,  

 

6 = 3 ∑ |∇���8�| + 9 ∑ ∑ &����8�, ���:�� +;:<=;8<=;8<= > ∑ |1��8�|?;8<=      (4) 
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Where; 3, 9 and > are positive weighting factors. The energy 

function (4) consists of three terms. The first term is the 

Laplacian of each edge pixel. The second term is the 

constraint on pixel values of all edge pixels. After thinning, 

remaining edge pixels should have similar values. To make 

this constraint as simple as possible, only the difference 

among eight neighboring pixels are considered, and the 

function d() is defined as 

 

&����8�, ���:�� = @|���8� − ���:�|,      !� �: ∈  AB��8�
0,                                         DEℎG�H!IG J          (5) 

 

AB��8� denotes the 8-neighbor of �8. The last term of (4) 

evaluates the curvature of the edge at each pixel. Similar to 

[17], [18], 1��8� is defined as: 

 

  1��8� = &!. # ∇K�LM�
|∇K�LM�|*                         (6) 

 

In addition, we want to emphasize that the thinning process 

should not shorten the edge, thus only redundant pixels on the 

edge can be removed. 

 

The optimal thinning solution for each edge-link is obtained 

through dynamic programming algorithm. Given a start point 

of each edge-link, the energies of all possible paths, linked in 

eight connective manner, are calculated according to (4). 

Referring to the width of the initial edge-link, several paths 

with smaller energies are recorded in the dynamic 

programming. Then, each recorded path is extended 

consequently by adding one neighbour pixel which results in 

the minimal energy. Note that the thinning algorithm can be 

performed in parallel manner for all edge-links in an image, 

because they are independent in terms of thinning process.  

 

B. Exemplar Selection 
After edges are extracted, exemplar selection is performed 

based on these available edges. Here, for simplicity, the 

exemplar selection process is performed at block level. 

Specifically, an input image is first partitioned into non-

overlapped 8×8 blocks, and each block is classified as 

structural or textural according to its distance from edges. In 

detail, if more than one-fourth of pixels in a block are within a 

short distance (e.g., five-pixel) from edges, it is regarded as a 

structural block, otherwise a textural one. Then, different 

mechanisms are used to select the exemplars for textural 

blocks and structural blocks. Blocks that are not selected as 

exemplars will be skipped during encoding. Moreover, 

exemplar blocks are further classified into two types, the 

necessary ones and the additional ones, based on their impacts 

on inpainting as well as on visual fidelity. Generally, one 

image cannot be properly restored without necessary exemplar 

blocks, whereas additional blocks help to further improve 

visual quality. 

 

 

 

C. Textural Exemplar Selection: 

Fig. 5(a) illustrates the process of exemplar selection for 

textural blocks. In this figure, edge information is denoted by 

thickened lines, based on which the image is separated into 

structural regions (indicated by gray blocks) and textural 

regions (indicated by white and black blocks). It is generally 

accepted that pure textures can be satisfactorily generated 

even given a small sample. However, in practice, image 

regions are often not pure textures, but rather contain kinds of 

local variations, such as lighting, shading, and gradual 

changing. Furthermore, exemplar-based texture synthesis is 

sensitive to the chosen samples. In image inpainting, a 

common solution to unknown textural regions is to synthesize 

them from samples in their neighborhood.   

 
Fig.5. An example of necessary exemplar selection in which curves denote 

edges and black blocks denote skipped regions. (a) Textural exemplar 

selection in which white blocks are necessary textural exemplars; (b) 

structural exemplar selection in which white blocks are necessary structural 

exemplars, four types of edges are also distinguished in (b) [36]. 

 

In our scheme, the necessary textural exemplars are selected in 

the border of textural regions. That is, as shown in Fig. 5(a), 

denoted by white blocks, if a textural block is next to a 

structural one, along either horizontal or vertical direction, it is 

considered as necessary. Such blocks are selected because 

they contain the information of transitions between different 

textural regions, which are hard to be restored by inner 

samples. Besides, propagation of these blocks, from outer to 

inner, can reconstruct the related textural regions. To further 

improve visual quality of reconstructed images, additional 

blocks can be progressively selected to enrich exemplars. In 

this process, we consider additional blocks as representatives 

of local variations. On the one hand, if a block contains 

obvious variation, it should be preserved in advance. On the 

other, because the variation is a local feature, removing large-

scale regions should be avoided in exemplar selection. Thus, 

each non-necessary textural block Bi is related to a variation 

parameter Vi  defined as 

 

NO = P=N���QO� + P( ∑ $R�QO� − R�QS�$)T∈UV�)W�            (7) 

 

Here and are positive weighting factors indicates 4-neighbor 

of a certain block. The functions and are the variance and 

mean value of the pixel values in a block, respectively. In our 

system, according to an input ratio, the blocks with higher 

variation parameters will be selected, during which we also 
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check the connective degree of each block so that the removed 

blocks do not constitute a large region. 2) Structural Exemplar 

Selection: Fig. 5(b) shows the exemplar selection method for 

structural blocks. In this figure, edges are represented by lines 

with indicated different types, and structural regions are 

indicated in white and black blocks, whereas all textural 

regions in gray. As we have discussed, besides many textural 

blocks, some structural blocks are also skipped at the encoder 

side and restored at the decoder side by the guidance of edge 

information. Therefore, necessary and additional structural 

exemplars are also selected based on available edges.  

 

To better introduce the method, edges are categorized into 

four types according to their topological properties, as 

indicated in Fig. 5(b): “isolated” edge traces from a free end 

(i.e., an edge pixel connected with only one other edge pixel) 

to another free end; “branch” edge traces from a free end to a 

conjunction (i.e., an edge pixel connected with more than 

three other edge pixels); “bridge” edge connects two 

conjunctions; and, “circle” edge gives  a loop trace. 

Commonly, edge acts as the boundary of different region 

partitions. For the sake of visual quality, in image inpainting, 

two textural partitions along both sides of an edge should be 

restored independently. The tough problem here is how to 

restore the transition between two partitions. We may use a 

model to interpolate the transition from textures of two 

partitions, but usually the results look very artificial and 

unnatural. Therefore, the blocks containing the neighborhood 

of free ends should be selected as exemplar so that the 

transitions of textural partitions can be restored by propagating 

information in these blocks along the edges. Conjunction 

blocks of edges are also selected as exemplar for similar 

reason because there are transitions among more than three 

textural regions. For circle edges, a circle completely divides 

the image into two partitions—inner part and outer part—so 

we choose two blocks as necessary exemplars, which contain 

the most pixels belonging to inner region and outer region of a 

circle edge, respectively.  

 

In a few words, by necessary exemplars, we provide not only 

samples for different textures separated by an edge, but also 

the information of the transitions between these textures, and 

thus the decoder is able to restore the structural regions. 

Additional structural blocks can also be selected as exemplars 

to further improve visual quality. Given an input ratio, the 

process is quite similar to that for textural blocks. Each non-

necessary structural block is also related to a variation 

parameter, which can be calculated by (7). Here, the different 

partitions separated by the edges are independently considered 

in calculating the mean value as well as the variance, and 

resulting parameters of different partitions are summed up to 

get the total variation parameter of a block.  

 

 
Fig. 6. Pixel-wise structure propagation. (a) A piece of edge and its 

influencing region, with arrowed dash-dot lines and dash lines showing the 

propagation directions. (b) Restoration of influencing region in which each 

generated pixel is copied from one of two candidate pixels [36]. 

 

III.II EDGE-BASED IMAGE INPAINTING 

Based on the received edges and exemplars, we propose an 

edge-based image inpainting method to recover the non-

exemplar regions at the decoder side. Different from the 

encoder, the inpainting algorithm is not block-wise but rather 

designed to deal with arbitrary-shaped regions. Still, the non-

exemplar regions are classified into structures and textures 

according to their distances to the edge as the encoder. 

Generally, structures are propagated first, followed by texture 

synthesis [36]. A confidence map, similar to that in [20], [21], 

is constructed to guide the order of structure propagation as 

well as texture synthesis. Specifically, at the very beginning, 

known pixels (pixels in decoded exemplars) are marked with 

confidence 1 and unknown pixels (pixels in removed blocks) 

are marked with confidence 0. Afterwards, each generated 

pixel is related with a confidence value between 0 and 1 

during the inpainting process. Besides, known pixels as well 

as generated pixels are all called “available” ones in this 

section. In the literature, exemplar-based inpainting methods 

can be roughly classified into two types, i.e., pixel-wise 

schemes and patch-wise schemes. Pixel-wise methods are 

suitable for restoration of small gaps, but may introduce 

blurring effects or ruin texture pattern while dealing with large 

areas. Patch-wise methods, on the contrary, are good at 

keeping texture pattern, but may introduce seams between 

different patches, which are quite annoying. In our scheme, 

these two strategies are adapted for different circumstances 

[36]. 

A. Structure Propagation 

A sketch map of structure propagation is shown in Fig. 6. The 

gray block in Fig. 6 indicates an unknown structural block; the 

black curve with circle points represents an edge piece and 

related pixels; and four dash-dot lines restrict a region, namely 

influencing region, including unknown pixels within a short 

distance (e.g., ten-pixel) from the edge. Notice that it is the 

edge piece together with the influencing region, rather than a 

structural block, is treated as a basic unit in the structure 

propagation. Since the free ends and conjunctions of edges are 

all selected as exemplars, the textural regions along an edge 

can be readily divided and independently generated in 

inpainting process. To recover a basic unit, the unknown 
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pixels belonging to the edge piece are firstly generated. As 

shown in Fig. 6(a), the unknown pixels (denoted by black 

points) are generated from the known pixels (indicated by 

white points) using linear interpolation, i.e.,  

����8� = ∑ XMYK��LY�ZY[\
∑ XMYZY[\

                                                                               

(8a) 

               HℎG�G, '8: = @|" − 1|](, !��:!I 1"DH"
0,                      DEℎG�H!IG J           (8b) 

 

 

Where, similar to (4), gives the number of pixels in this edge 

piece and n and k index different pixels. After the edge 

restoration, neighboring structure as well as texture within the 

influencing region will be filled-in with regard to the 

recovered edge. The inpainting method for completion of 

influencing region is designed concerning the following facts. 

First, pixel-wise approach is preferred since narrow regions 

along edge pieces are to be handled. Second, edges are 

expressed by one-pixel-width curves, which can be quite 

different in geometric shapes among exemplar and non-

exemplar regions, so we have to wrap the edges to reconstruct 

the unknown structure. 

 

Finally, the widths of structures are local variant, which means 

that it is hard to tell the exact boundary between structure and 

texture in an influencing region. Therefore, in our scheme, 

each pixel in the influencing region will have two candidates: 

one is treated as a structural pixel to be propagated parallel 

along the edge; the other is regarded as a textural pixel to be 

generated from the neighboring available pixels. Then, the one 

that makes a smooth transition from structure to texture will 

be selected 

to fill-in the unknown pixel. Moreover, as the decision making 

on candidate pixels is highly relevant to its available  

 

 
 

Figure: 7. Pair matching in our structure propagation algorithm [36]. 

 

neighbors, the order for pixel completion is another important 

issue that should be considered. Thus, we also construct a 

confidence map, as mentioned at the beginning of this section, 

to control the generation order. For the unknown pixel, the 

higher the neighboring confidence is, the earlier it will be 

generated. Accordingly, the recovery of influencing region is 

performed as follows. Here, unknown pixels to be recovered 

in the influencing region are called target pixels. They are 

denoted by black points in Fig. 6(b). For each target pixel, two 

candidate pixels are searched out from the surrounding 

available pixels. The structural candidate (S-candidate) of the 

target pixel, which lies within the influencing region, is 

indicated by horizontal striped point in Fig. 6(b); whereas the 

textural candidate (T-candidate) of the target pixel is denoted 

by vertical striped point, which locates within a short distance 

from the target pixel despite whether it is within the 

influencing region or not.  

 

A pair matching method, similar to that in [8], is utilized to 

generate both the S-candidate and the T-candidate. As 

illustrated in Fig. 7, for each assistant pixel, also known as any 

available pixel belonging to the 8-adjacent neighborhood of 

the target pixel, we will search for its match pixel(s) with the 

most similar value to it. Then, complying with the spatial 

relation between the assistant pixel and the target one, a pixel 

adjacent to a match pixel in the same relative spatial position 

is selected as a source pixel. As indicated in Fig. 7, an 

assistant pixel may correspond to several match pixels and 

gives several source pixels; meanwhile, several assistant 

pixels in 8-adjacent neighborhood may generate the same 

source pixel, as well. After obtaining several source pixels, we 

propose to use a weighted-SSD (sum of squared difference) 

criterion to choose the S-candidate, as given in: 

 

_̂ = ∑ �$&�� Ò � − &��aO�$ + 1� × $���� Ò � − ����aO�$(
O            (9) 

 

Where � Ò  and �aO  are corresponding, the ith pixel in the 

neighborhood of the S-candidate and the target pixel, 

respectively, and d() indicates the distance from each pixel to 

the edge,����, as used before, is the reconstructed image. By 

minimizing (9), we can find the S-candidate from the obtained 

source pixels, which is situated in a similar relative position to 

that of the target pixel with respect to the edge, thus ensure the 

parallel diffusion of structural information. Differently, since 

no direction information involved in textural region, only the 

ordinary SSD between the neighborhood of source pixels and 

target pixel is considered as the criterion to choose the T-

candidate, 

^d = ∑ $����dO � − ����aO�$(
O                       (10) 

 

Similar to that in (9), �dO  here represents the i
th

 pixel in the 

neighborhood of the T-candidate. Thus, the source pixel that 

has the most similar neighboring values to the target one will 

be selected as the T-candidate. In fact, the two diffusions, or 

S-candidate selection and T-candidate selection, are 

simultaneous and competitive. These two candidates have to 

compete with each other and only one of them will be chosen 

to fill-in the target pixel. Normally, if target pixel nears edge, 

the choice will bias to the S-candidate. In addition, it can be 

observed that long-distant parallel diffusion of structural 

information often leads to blurring artifacts. Thus, the 
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determination is made by comparing ^d and `̂e  which are 

defined in (10) and (11), respectively   

 

        `̂e = # f
fg + /f

/fg* × ∑ $���� Ò � − ����a(�$(
O                        (11)  

                

Here &h and i&h are constants and d=d(xt) stands for the 

distance from the target pixel to the edge and pd indicates the 

distance from the target pixel to the S-candidate, as shown in 

Fig. 6(b). If DT is less than `̂e , then the T-candidate is chosen 

to fill-in the target pixel, otherwise the S-candidate is selected. 

In this way, all unknown pixels within the influencing region 

of an edge are generated.  

 

B. Texture Synthesis  

The edges as well as their influencing regions are readily 

restored by structure propagation. Then, in this subsection, the 

remainder unknown regions are treated as textural regions, so 

texture synthesis is employed to fill-in these holes [36]. For 

textural regions, we prefer patch-wise algorithms because they 

are good at preserving large-scale texture pattern. We choose 

square patches as the fundamental elements while a 

confidence map is introduced to guide the order of synthesis. 

Unknown textural regions are progressively restored during 

texture synthesis by first reconstructing the prior patches and 

then the others that remain.  

The priority of a patch is determined by calculation of 

confidence and the distance from the edge. As shown in Fig. 

8, for each patch centered at a marginal pixel of unknown 

regions (denoted by target patch), we calculate the average 

confidence value of all pixels in this patch, as well as the 

average distance of all pixels from the edge. Then the patch 

with the highest confidence rating and the greatest distance 

from the edge will be synthesized first. Afterwards, a source 

patch, which is most similar to the target patch, will be 

searched out from the neighborhood of the target patch. Here, 

the similarity of two patches is measured by the SSD of pixel 

values between overlapped available pixels of two patches. A 

patch that results in the least SSD will be chosen as the source 

patch.  Notice that the filling-in process is not as. 

 
Fig. 8. Patch-wise texture synthesis in our scheme [36]. 

 

Simple as copy-paste work, we have to deal with overlapped 

regions as well as seams. In our algorithm, the graph-cut 

method proposed in [39] is used to merge the source patch into 

the existing image, and the Poisson editing [34] is utilized to 

erase the seams. After one patch is restored, the confidence 

map is updated. All newly recovered pixels are treated as 

available pixels in the following synthesis steps. Then, the 

next target patch is searched and processed until no unknown 

pixel exists. Given the detected edge pixels, we first group 

them into eight connective links and each edge-link (also 

known as a connected component in the graph that is made up 

by edge pixels) is thinned independently. 

 

IV. PROPOSED WORK: IMAGE COMPRESSION WITH 

EDGE-BASED INPAINTING AND IMAGE 

RESTORATION 

 

It is just the region to be restored by image compression, 

image inpainting, or a combination of them. This restoration 

problem can be generalized as  

    arg min�� D�fΩ�x� − f�Ω�x�dx� + λR
Ω

�             (1) 

Here fΩ�x�, is the original image function in Ω, where it 

should satisfy fΩ�x� = F�x�, for any X ∈ Ω. f�Ω�x� is a 

reconstruction of fΩ�x� at decoder. λ is a Lagrange factor. 

Clearly, (1) is to find the optimal function by minimizing the 

joint cost consisting of reconstructed distortion D( ) and 

coding bits R for Ω .Thus, image compression and image 

inpainting can be viewed as two extreme cases of (1). 

Specifically, in traditional image compression, fΩ�x� is 

directly coded and sent to the decoder, where many bits may 

be needed to represent fΩ�x�; whereas in image inpainting, 

there is no bit to represent fΩ�x� since f�Ω�x� is inferred 

from� �
Ω

�L�.However, our proposed method, which is quite 

different from compression or inpainting, can be granted as a 

combination of them. In typical inpainting scenarios, the 

restoration of is usually an ill-posed problem because 

information in is totally unknown. Then, the TV model is to 

find a function on the extended inpainting region such that it 

minimizes the following energy function: 

���  !" #� $∇��Ω���$&� + ' � $��Ω��� − ����$(&�))∪Ω *        (2) 

 

The first term in (2) is to measure local homogeneity of image 

function in the region Q ∪Ω, and the second term, called as 

fidelity term, is the sum of squared difference (SSD) between 

the reconstructed B in ��Ω��� and the original B in ���� . 

Equation (2) can be solved by the Euler–Lagrange method 

described in[16]. Accordingly, TV inpainting is good at 

restoring homogenous regions. But, if the lost region contains 

rich structures, it does not work well, especially when 

structures are separated far apart by the lost region. To solve 

it, another parameter + is introduced in the inpainting model 

[17].  

To recover a basic unit, the unknown pixels belonging to the 

edge piece are firstly generated. As shown in Fig. 6(a),  

 

����8� = ∑ XMYK��LY�ZY[\
∑ XMYZY[\

                    (3) 

 

The unknown pixels (denoted by black points) are generated 

from the known pixels (indicated by white points) using linear 

interpolation, i.e.        
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HℎG�G'8: = @|" − 1|](, !��:!I 1"DH"
0,                      DEℎG�H!IG J                             (4) 

 

Where, similar to (4), N gives the number of pixels in this 

edge piece and n and k index different pixels. After the edge 

restoration, neighboring structure as well as texture within the 

influencing region will be filled-in with regard to the 

recovered edge. The inpainting method for completion of 

influencing region is designed concerning the following facts. 

First, pixel-wise approach is preferred since narrow regions 

along edge pieces are to be handled. Second, edges are 

expressed by one-pixel-width curves, which can be quite 

different in geometric shapes among exemplar and non-

exemplar regions, so we have to wrap the edges to reconstruct 

the unknown structure. An assistant pixel may correspond to 

several match pixels and gives several source pixels; 

meanwhile, several assistant pixels in 8-adjacent 

neighborhood may generate the same source pixel, as well. 

After obtaining several source pixels, we propose to use a 

weighted-SSD (sum of squared difference) criterion to choose 

the S-candidate, as given in 

_̂ = ∑ �$&�� Ò � − &��aO�$ + 1� × $���� Ò � − ����aO�$(
O             (5) 

Where � Ò  and �aO  are corresponding, the i
th

 pixel in the 

neighborhood of the S-candidate and the target pixel, 

respectively, and indicates the distance from each pixel to the 

edge, as used before, is the reconstructed image. 

 

Texture Synthesis  

The edges as well as their influencing regions are readily 

restored by structure propagation. Then, in this Subsection, the 

remainder unknown regions are treated as textural regions, so 

texture synthesis is employed to fill-in these holes. For 

textural regions, we prefer patch-wise algorithms because they 

are good at preserving large-scale texture pattern. We choose 

square patches as the fundamental elements while a 

confidence map is introduced to guide the order of synthesis. 

Unknown textural regions are progressively restored during 

texture synthesis by first reconstructing the prior patches and 

then the others that remain. The priority of a patch is 

determined by calculation of confidence and the distance from 

the edge. 

 
 

Figure: 1. The framework of the image compression scheme [36]. 

 

 

Assistant Encoder Information  

The Assistant Information is finding out by the edges of the 

image in different directions this the added term to increase 

the compressed image more close to original one. 

  

Performance Parameters 

Performance of the image compression coding, it is necessary 

to define a measurement that can estimate the difference 

between the original image and the decoded image. Two 

common used measurements are the Mean Square Error 

(MSE) and the Peak Signal to Noise Ratio (PSNR), which are 

defined in Equations below. f(x, y) is the pixel value of the 

original image, and f’(x, y)is the pixel value of the decoded 

image [36]. Most image compression systems are designed to 

minimize the MSE and maximize the PSNR. 

klR = m∑ ∑ nK�L,o�]Kp�L,o�qrs\t[gus\v[g
w

xy                             
zl{| = 20log=h (��

�`�                                                

IV. RESULTS AND ANALYSIS 

The algorithm proposed here will compress an image without 

prior knowledge of the image geometry and any specific 

parameter. The figure below shows the results: The proposed 

method is based on determining the image edges in all 

possible directions such as horizontal, vertical and diagonal 

(principal Diagonal) profile of the image. In this proposed 

method we sued the Run Length encoding method for 

encoding that increases the compression ratio and we use the 

edge information as the to restore the image. It is implemented 

using MATLAB 7.9.0 (R2009b) on i-5 processor with 4-GB 

RAM. The simulations have been tested on aerial images in 

figure 5.1. Figure 5.1 (a) shows the Original Image of 

Cameraman, Image of Cameraman along with edge maps of 

that Image and its respective Compressed Image.  
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Figure: 5.1(a) Original Image of Cameraman (b) Horizontal 

edge map (c) Vertical edge map (d) Diagonal edge map (e) 

Decomposition of image at level-1(f) Compressed Image by 

proposed method. 

Figure 5.2 shows the result obtained from the method based on 

image compression with edge based inpainting. 

Now Figure 5.3 shows the comparison between Edge-based 

inpainting method and our proposed method. The proposed 

method gives better result as compared to the previous method 

of image compression with edge based inpainting.  

 

 
Figure: 5.3(a) Compressed Image by Edge based inpainting method (b) 

Compressed Image by proposed method. 

 

 

 

Figure 5.10 Graphs for the Cameraman Image 

 

 

V CONCLUSION 

 

Here our method of image compression provides the wavelet 

decomposition method run length encoding to encode the data 

and as assistant information is used from the edges in three 

directions. The new image compression algorithm called 

Shape- Adaptive Image Compression, which is proposed by 

Huang [5], takes advantage of the local characteristics for 

image compaction The DCT-based image compression such as 

JPEG performs very well at moderate bit rates; however, at 

higher compression ratio, the quality of the image degrades 

because of the artifacts resulting from the block-based DCT 

scheme. Wavelet-based coding such as JPEG 2000 on the 

other hand provides substantial improvement in picture quality 

at low bit rates because of overlapping basis functions and 

better energy compaction property of wavelet transforms. 

Because of the inherent multi-resolution nature, wavelet-based 

coders facilitate progressive transmission of images thereby 

allowing variable bit rates. We also briefly introduce the 

technique that utilizes the statistical characteristics for image 

compression. The new image compression algorithm called 

Shape- Adaptive Image Compression, which is proposed by 

Huang [5], takes advantage of the local characteristics for 

image compaction. The SAIC compensates for the 

shortcoming of JPEG that regards the whole image as a single 

object and do not take advantage of the characteristics of 

image segments. However, the current data compression 

methods might be far away from the ultimate limits. 

Interesting issues like obtaining accurate models of images, 

optimal representations of such models, and rapidly 

computing such optimal representations are the grand 

challenges facing the data compression community. Image 

coding based on models of human perception, scalability, 

robustness, error resilience, and complexity are a few of the 

many challenges in image coding to be fully resolved and may 

affect image data compression performance in the years to 

come. 
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