

Improvement in THD and Good Power Factor for Three Phase AC-DC Converter by using PWM and Capacitor Technique

Pankaj Kumar^{1*}, Prof. Ashish Bhargav²

M. Tech. Scholar, Department of Electrical Engineering, Bhabha Engineering Research Institute, Bhopal¹
Assistant Professor, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal²

Abstract: A novel single stage high step up full bridge AC-DC converter, based on the concept of switched capacitor topology existing in high step up DC-DC converter, is proposed in this work. In switched capacitor technique, capacitors on secondary side are charged in parallel during the switch-off period, by the energy stored in the coupled inductor, and are discharged in series during the switch-on period to achieve a high step-up voltage gain. The switched capacitor technique meant for high voltage gain is discussed in many conventional DC-DC converters. The proposed AC-DC full bridge converter converts the input AC voltage into DC and boost with a high voltage gain in a single stage. For high voltage gain AC-DC converters many techniques are proposed in literature. In this work, switched capacitor technique is used in AC-DC converter is a novel method for attaining high voltage gain. Open loop control of the proposed converter is done by using PWM control. The closed-loop control methodology is utilized in the proposed scheme to overcome the voltage-drift problem of power source under the variation of loads. The operating principle, steady state analysis and design of proposed single stage high step up AC-DC converter is carried out. Simulation results, using MATLAB, are carried out for proposed AC-DC converter.

Keywords: Full-bridge converters, Input current shaping, low-distortion input current, single-stage power factor correctors (PFCs)

1. INTRODUCTION

The present day automated world has witnessed inexplicable changes that have led to the growth and development of a contemporary technological era [1]. It has become imperative on the part of electric utilities to accommodate the necessary changes with a view to accomplish the challenges of the growing application needs [2, 3]. Thus the power electronic interfaces have become an imminent necessity in order to meet the objective. The consequent extensive use of semi-conductor power switches inadvertently generates the acrimonious signals. It may cause deleterious effects to the system as well as its performance. Today more than 70% of the electrical energy generated, flows through power electronic systems and it is expected that it will eventually grow to 100% [4, 5]. Three-phase AC-DC converters have a wide range of applications, from small converter to large high voltage direct current transmission systems. They are used for electrochemical processes, many kinds of motor drives, traction equipment, controlled power supplies and many other applications [6, 7]. From the point of view of the commutation process, they can be classified into two important categories: line-commutated controlled converters and force-commutated

pulse width modulated converters [8]. In most power electronic applications, the power input is in the form of a 50 or 60Hz sine wave ac voltage provided by the electric utility that is first converted to a dc voltage. Increasingly, the trend is to use the inexpensive rectifiers with diodes to convert the input ac into dc in a uncontrolled manner, using rectifiers with diodes as illustrated by the block diagram in Figure 1 [9].

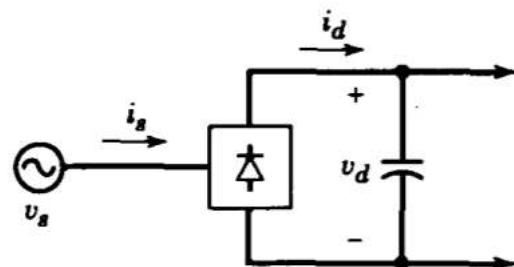


Figure 1: Block diagram of a rectifier

In such diode rectifiers, the power stream must be from the utility cooling side to the dc side [6]. A prevailing piece of the power devices applications, for instance, trading dc power supplies, cooling motor drives, dc servo drives, and so on use such uncontrolled rectifiers. In most by far of these applications, the rectifiers are given direct from the utility source without a 50 Hz transformer. The evading of this costly and awkward 60 Hz transformer is huge in most present day power electronic systems.

The dc yield voltage of a rectifier should be as wave free as possible thusly, a gigantic capacitor is related as a channel on the dc side. This capacitor gets charged to a value close to the zenith of the climate control system input voltage. As a result the current through the rectifier is incredibly enormous near the apex of the 50Hz cooling input voltage and it doesn't stream relentlessly; that is, it gets zero for constrained ranges during each half-cycle of the line repeat [7]. These rectifiers draw extraordinarily mangled current from the utility. By and by and significantly more so later on, consonant benchmarks and rules will limit the proportion of current winding allowed into the utility, and fundamental diode rectifiers may not be allowed.

II. PULSE WIDTH MODULATION

Right when a PWM banner is associated with the gateway of a force transistor, it causes the turn on and executes between times of the transistor to change beginning with one PWM period then onto the following PWM period as showed by a

similar directing sign and in this way working of converter starts. The repeat of a PWM banner must be generously higher than that of the directing sign, the significant repeat, with the ultimate objective that the essentialness passed on to the pile relies for the most part upon the tweaking signal. The control of yield voltage is finished using beat width balance.

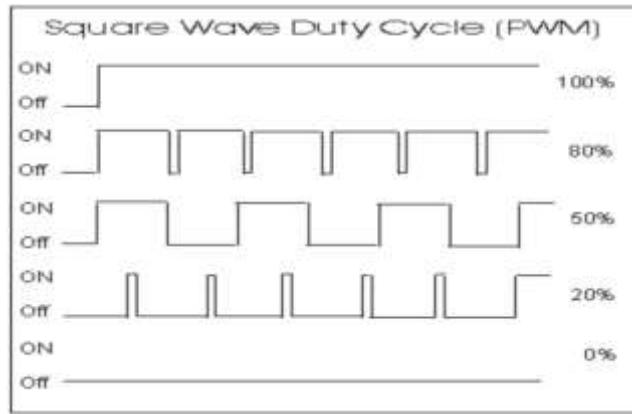


Figure 2: Pulse Width Modulation

III. AC-DC CONVERTER

The applications of high step up AC-DC full bridge converters are intensity discharge lamp ballasts for automobile headlamps, fuel-cell energy conversion systems, solar-cell energy conversion systems, battery backup systems for uninterruptible power supplies (UPS) etc. Here proposing a new single stage high step up AC-DC full bridge converter topology that features simple power and control circuitry. PWM control is used to control the switching action of the switches. Performance of the proposed converter under steady state analysis in continuous conduction mode is discussed in detail. Emphasis is given on demonstrating the operating principle, modes of operation, and derives circuit equation.



Figure 3: Block Diagram of Proposed AC-DC Convert

The contents of this paper includes proposal of a new single stage high step up AC-DC full bridge converter topology that features simple power and control circuitry.

- 2) Full Bridge AC-DC converter (FB) which consists of four MOSFET switches that are built-in anti-parallel diodes
- 3) Performing the steady state analysis of the proposed converter in continuous mode of operation.
- 4) Analyzing the open loop and close loop simulation results of AC-DC full bridge converter.

The block diagram of AC-DC converter is shown in Figure 3, gives a constant ac input voltage to the MOSFET full bridge

circuit, and that output is given to the primary side of the coupled inductor with low magnetizing inductance. The secondary side of the coupled inductor is fed to the switched capacitor circuit and obtains high voltage dc output voltage. Driver circuit is essential for giving power to control signal for driving MOSFET.

IV. PROPOSED MODEL

PWM signals are pulse trains which are applied to the gate of switches to perform the operation of converter. The pulse trains are fixed frequency and magnitude and variable pulse width. There is one beat of settled extent in each PWM period. In any case, the width of the beats changes from period to period as indicated by a regulating signal.

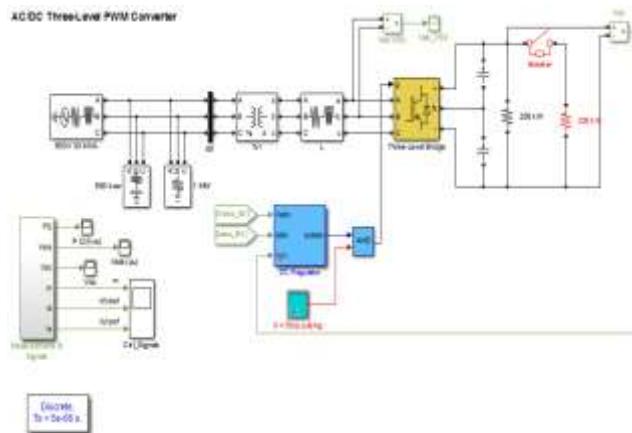


Figure 4: MATLAB Simulink Model of AC/DC Three Level PWM Converter

Description:-

- Converter rating: 500 Volts DC, 500 kW
- AC Supply: three-phase, 600 V, 30 MVA, 60 Hz system
- Voltage-sourced Converter (VSC): - Three-level, three-phase IGBT bridge (modeled using the "Three-Level Bridge" block) controlled by a PWM modulator (carrier frequency of 1620 Hz) - DC Link: 2 capacitors of 75000 μ F
- Controller: The DC regulator uses two PI regulators to control the DC voltage while maintaining a unity input power factor for the AC supply.

Switching Capacitor Technique

The circuit is composed of sinusoidal mains voltage V_{in} , four switches S_1, S_2, S_3 and S_4 , coupled inductors N_p and N_s , diodes $D_a, D_b, D_c, D_d, D_1, D_2, D_3$ and D_4 , two capacitors C , and C_2 , two secondary diodes D_5 and D_6 , output diode D_o , and output capacitor C_o and load R_o are shown in Figure 4. The turn's ratio of the coupled inductor n is equal to $N_s N_p$. However a known delay is introduced between turn-off of one switch and the turn on of the other switch of the same leg to avoid simultaneous conduction of any two switches from the same leg. The gate drives of both legs, S_1, S_4 or S_2, S_3 are complementary.

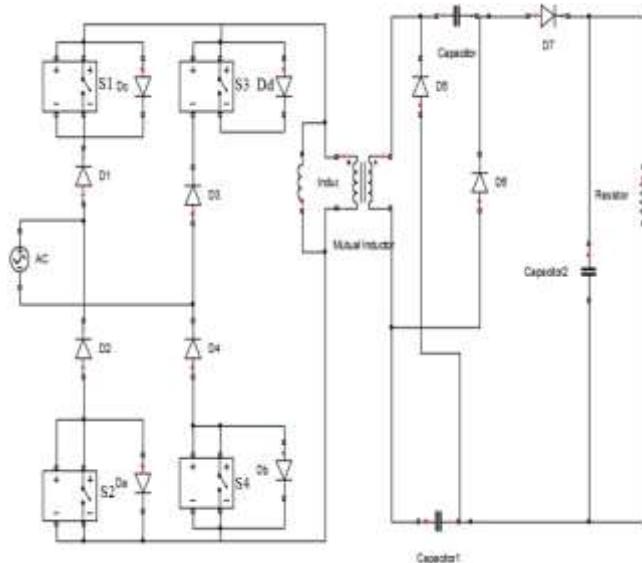


Figure 5: Circuit of Proposed Converter using Switching Capacitor Technique

The utilization of switches with low obstruction RDS (ON) is to diminish the conduction loss of the whole circuit. The equal charged current isn't inflow. The proposed converter used the idea of exchanged capacitor procedure ie, two capacitors can be charged in equal and released in arrangement to accomplish a high advance up gain. In this manner, capacitors on the optional sides CI and C2 are charged in equal and are released in arrangement by the switches are killed and turned ON is appeared in Figure 5. Obligation cycle D is characterized as when S1 and S2 are both ON during the principal half cycle or when S3 and S4 are both ON during the subsequent half cycle. The rule is that, when the switches are turned ON, the vitality put away in attractive inductor and the coupled-inductor-instigated voltage on the auxiliary and the initiated voltage makes VL2, Vc" and VC2 discharge vitality to the yield in arrangement.

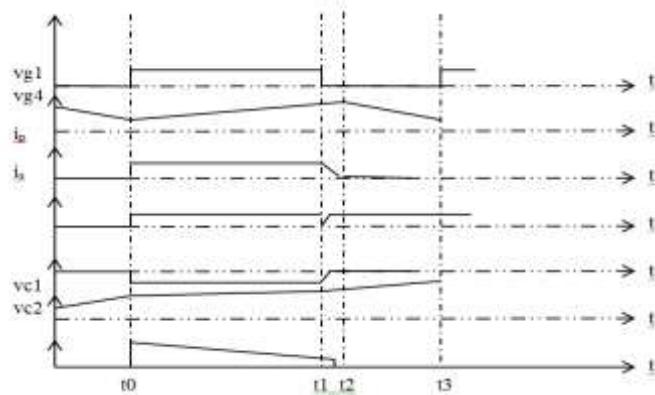


Figure 6: Waveforms of AC-DC Converter using Switching Technique

To achieve a high step-up voltage gain the proposed converter adds two capacitors and two diodes on the secondary side of the coupled inductor. The two capacitors can parallel charged

by coupled inductor and series discharged. Figure 6 shows the waveform of the proposed AC-DC converter.

Mode of operation

This segment presents three methods of activity of the proposed converter. Activity and the waveforms of the proposed AC-DC converter in positive half cycle and in negative half cycle are same. Just the thing that matters is that in positive half cycle the two switches S1 and S4 are ON and the diodes D1 and D4 are in forward one-sided. However, in negative half cycle the two switches S2 and S3 are ON and the diodes D2 and D3 are in forward one-sided. The methods of activity and the present stream way of every method of the circuit in positive half cycle are talked about right now.

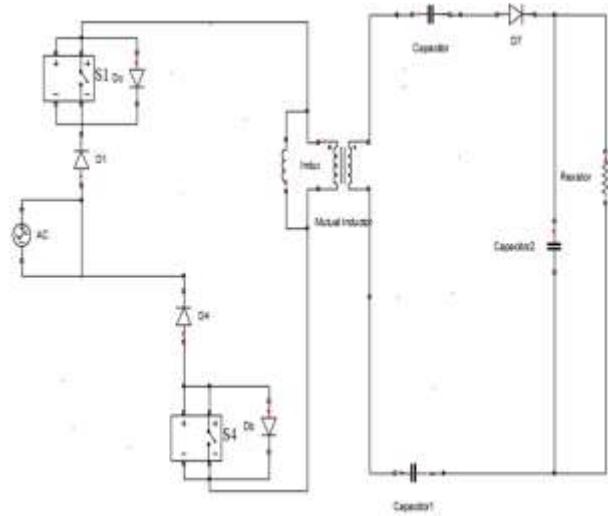


Figure 7: Circuit operation in mode-I

Mode 1: Figure 7 shows the mode I activity. Here the two switches SI and S4 are ON. The polarizing current i_{LM} will increments directly. The two optional capacitors C1 and C2 are released in arrangement. Diodes D1 and D4 and the yield diode D0 will be in forward one-sided. The optional diodes D5 and D6 will be backward one-sided. V_{in} , V_{C1} , V_{C2} which are associated in arrangement, release to high-voltage yield capacitor C_0 and burden R. This mode closes at the time $t=t_1$.

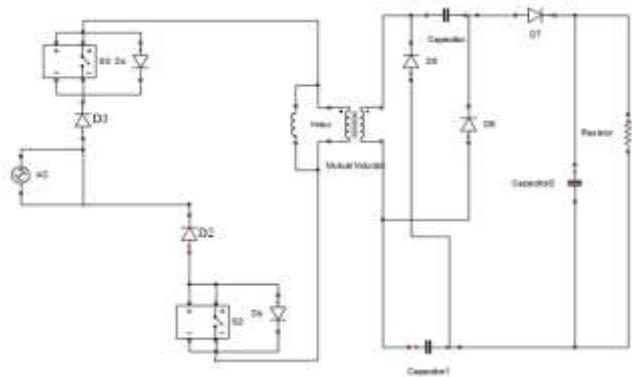


Figure 8: Circuit operation in mode-II

Mode II: mode 11 shows in Figure 7. Here SI and S4 are in off condition and the input voltage pass through the parasitic capacitor. The energy of magnetizing inductor Lm transfers to capacitors C1 and C2 and charged in parallel. The diodes DI, D4 and the secondary diodes Ds and D6 and output diode Do will be forward biased the output capacitor CO provides energy to the load R. This mode ends at the time t=t2.

V. SIMULATION RESULT

A PWM control technique is discussed, which allows optimum operation of a fully controlled three-phase ac/dc bridge converter. With this technique sinusoidal input currents and ideally smoothed dc voltage may simultaneously be obtained, resulting in significant reduction of both ac and dc filters. Input power factor control is also achieved together with full regulation of the output voltage. A simplified scheme using only three unidirectional switches is also studied, capable of similar performances in a reduced range of operation. The behavior of the converter is analyzed, even in non-ideal conditions, and design criteria are derived.

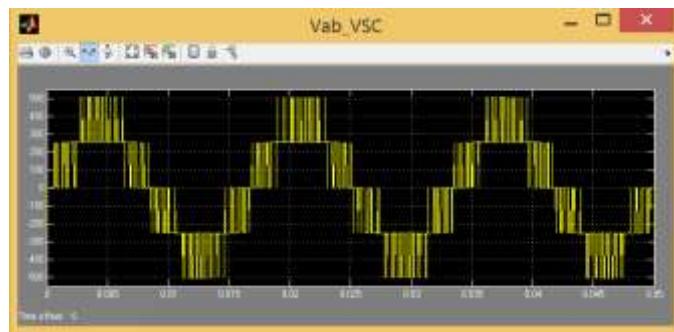


Figure 8: Output waveform of the AC/DC Three Level PWM Converter

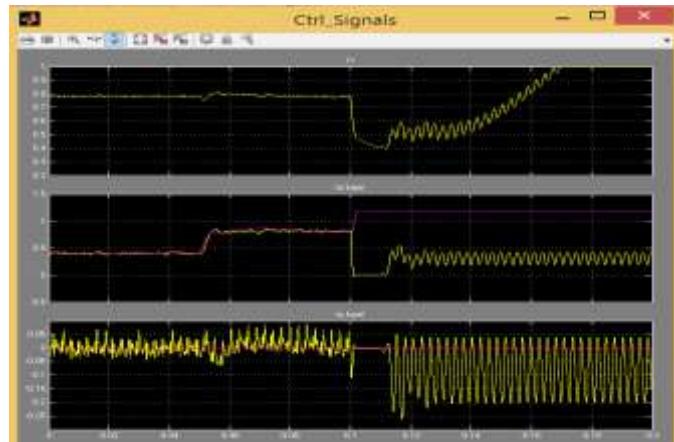


Figure 9: Output waveform of the AC/DC Three Level Control Signal PWM Converter

Control schemes are examined, giving full regulation of the output voltage while maintaining the desired input performance, even in the presence of a non-negligible ripple of the output current. Theoretical results were tested on transistor prototypes, showing excellent agreement between

ideal and actual behavior. The results obtained demonstrate that the considered technique leads to flexible and reliable operation and allows considerable reduction in weight and size of converters.

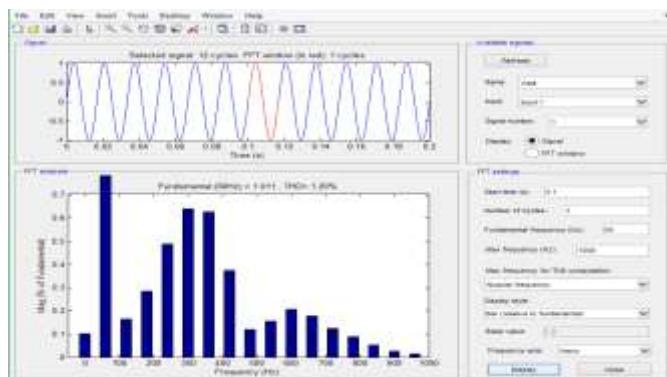


Figure 10: Total Harmonic Distortion

VI. CONCLUSION

In this paper, after the study of methods used to improve the voltage gain in DC-DC converter and AC-DC converters in the early literature, a new single stage AC-DC converter has been proposed based on the idea of switched capacitor technique, this paper proposes a novel single stage high step up full bridge AC-DC converter based on the concept of switched capacitor topology, implemented in high step up DC-DC converter. In switched capacitor technique, capacitors on secondary side are charged in parallel during the switch-OFF period, by the energy stored in the coupled inductor, and are discharged series during the switch-ON period to achieve a high step-up voltage gain. The proposed AC-DC full bridge converter converts the input AC voltage into DC and boost with a high voltage gain in single stage. For high voltage gain AC-DC converters many techniques are proposed in literature. In this work, switched capacitor technique is used in AC-DC converter is a novel method for attaining high voltage gain.

REFERENCES

- [1] Fengjiang Wu and Xiaoguang Li, "Improved Modulation for Dual Active Bridge Based Three-Phase Single-Stage AC-DC Converter", 978-1-7281-0395-2/19/\$31.00 ©2019 IEEE.
- [2] Felix Jauch and Jürgen Biela, "Combined Phase-Shift and Frequency Modulation of a Dual-Active-Bridge AC-DC Converter With PFC", IEEE Transactions on Power .Volume: 31 Issue: 12, 2016.
- [3] Sin-Woo Lee and Hyun-Lark Do, "Single-Stage Bridgeless AC-DC PFC Converter Using a Lossless Passive Snubber and Valley Switching", IEEE Transactions on Industri..Volume: 63 Issue: 10 .2016.
- [4] Chushan Li and Yu Zhang, "Single-Phase Single-Stage Isolated ZCS Current-Fed Full-Bridge Converter for High Power AC/DC Applications", IEEE Transactions on Power El. Volume: PP Issue: 99 2016.
- [5] Revathi V I, Muhammedali Shafeeqe K" Closed Loop Operation of High Boost OC-OC Converter Operating in CCM Mode" in Proc. International Journal of Scientific Engineering and Applied Science (USEAS) - vol. 1, no.4, June 2015.
- [6] , "A novel primary-side regulation scheme for single-stage high-power-factor AC-DC LED driving circuit", IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4979-4986, Nov. 2013.

- [7] A. A. Fardoun, E. H. Ismail, N. M. Khraim, A. J. Sabzali, M. A. Al-Saffar, "Bridgeless high-power-factor buck-converter operating in discontinuous capacitor voltage mode", *IEEE Trans. Ind. Appl.*, vol. 50, no. 5, pp. 66-72, Sep./Oct. 2014.
- [8] V. Nimesh and V. John, "Dual comparison one cycle control for single phase ac to dc converters," in Power Electronics, Drives and Energy Systems (PEDES), 2014 IEEE International Conference on. Mumbai, Maharashtra, India, 2014, pp. 1-6.
- [9] J.-W. Shin, S.-J. Choi, B.-H. Cho, "High-efficiency bridgeless fly-back rectifier with bidirectional switch and dual output windings", *IEEE Trans. Power Electron.*, vol. 29, no. 9, pp. 4752-4762, Sep. 2014.