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 Abstract – This study Predictive maintenance seeks to anticipate equipment breakdowns and 

reduce unplanned downtime through the utilization of sensor data and sophisticated modeling 

techniques. This study introduces a detailed pipeline utilizing the AI4I 2020 Predictive 

Maintenance Dataset, a high-caliber synthetic industrial dataset that includes air and process 

temperatures, rotational speed, torque, tool wear, and failure labels from the UCI Machine 

Learning Repository. Our methodology includes thorough preprocessing, which involves the 

elimination of inaccurate measurements, the generation of engineering characteristics such as 

temperature difference and mechanical power, feature standardization, and stratified train-test 

division. Class imbalance is mitigated using SMOTE, which equalizes the proportion of failure 

and non-failure cases. We develop and enhance various machine learning models (Random 

Forest, XGBoost, SVM, Logistic Regression) and a Conv1D deep learning model specifically 

designed for sequential sensor data. Model performance is assessed using metrics like accuracy, 

precision, recall, F1-score, ROC-AUC, and log loss. Results indicate that Random Forest and 

XGBoost achieve good accuracy and balanced detection, whereas SMOTE markedly improves 

recall. The Conv1D network demonstrates significant vulnerability to failures, especially when 

class balancing is implemented. The innovation consists of combining domain-specific feature 

engineering with sophisticated oversampling methods and evaluating machine learning and 

deep learning algorithms on a practical maintenance dataset. Future endeavors will concentrate 

on implementing the model in real-time industrial settings, investigating hybrid architectures 

that integrate interpretability with sequential pattern learning, and assessing model robustness 

using live maintenance data. 

 Keywords- Predictive Maintenance, Convolutional Neural Network (Conv1D), Machine 
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1. Introduction 

The steel industry is one of the biggest and most energy-intensive in the world. It depends on 

rotating machines like motors, pumps, fans, turbines, compressors, and gearboxes to keep 

running all the time. These machines are the backbone of production processes because they 

keep materials and energy flowing without stopping. However, these machines are very likely 

to break down unexpectedly because they are used in harsh conditions, carry heavy loads, 

vibrate, and get hot. This not only stops production, but it also costs a lot of money, puts people 

at risk, and makes operations less efficient. In steel plants, traditional maintenance methods 

like reactive maintenance (where repairs are made after a failure) or preventive maintenance 

(where servicing is done on a regular basis no matter what the equipment's actual condition is) 

often don't work and cost too much because they either don't stop unplanned downtime or they 

cause unnecessary maintenance work. In this situation, predictive maintenance (PdM) has 

become a game-changing method that uses the combination of Internet of Things (IoT) 

technologies and advanced machine learning algorithms to predict when equipment will break 

down before it happens. This makes maintenance schedules more efficient, cuts down on 

downtime, lengthens the life of machines, and keeps production going without a hitch. IoT-

enabled sensors can be put on spinning machinery to collect, send, and store a steady stream 

of real-time data, like vibration signals, temperature measurements, noise emissions, 

lubrication content, and electrical parameters [1]. This is the first time we've ever been able to 

see how well the machines are performing. When you combine this vast amount of machine 

data with machine learning approaches, you can uncover little patterns and strange things that 

could be signals of issues before they emerge. Traditional monitoring systems might not be 

able to do this. Support Vector Machines, Random Forests, gradient boosters, and deep 

networks are examples of machine learning models that can work with complicated 

multifaceted sensor data, find non-linear relationships, and offer accurate predictions about the 

remaining useful life (RUL) and prospective failure mechanisms of rotating equipment. 

Preventive maintenance in steel plants not only makes the equipment more reliable, but it helps 

the plants accomplish their goals for energy efficiency, resource optimization, and 

sustainability by reducing waste, downtime, and better production planning [2]. The Industry 

4.0 paradigm has also made it easier to use smart manufacturing solutions. These technologies 

utilize AI, IoT, and big data analytics to create smart decision-making systems that can adapt 

in real time. Predictive maintenance that uses machine learning, the Internet of Things, and 

others is very helpful for fixing problems like uneven load distribution in rolling mills, 

induction motors that get too hot, pumping systems that have bearing failures, coupled with 

blowers that vibrate too much in steel plants, where retaining things running smoothly is very 

important. If these flaws aren't found, they can lead to very bad system failures. As high-

frequency IoT sensor data becomes more common, it's increasingly vital to use advanced 

feature extraction and signal processing methods, like time-domain, frequency-domain, and 

time–frequency analyses. This makes sure that AI algorithms are trained on features that are 

useful & representative, which makes fault classification and prediction more accurate. Making 

a good preventative care model for rotating machines in steel plants is hard, even though it has 
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a lot of potential. This is because it has to deal with noisy and high-dimensional data, make 

sure that multiple Internet of Things (IoT) devices can work together, manage large-scale data 

storage, or deal with privacy and cybersecurity issues. In addition, real-world industrial 

environments often deal with changing operational circumstances, changing loads, and outside 

interruptions. So, it is important to create machine learning models that are strong, flexible, 

and able to transfer knowledge between different types of machines and ways of doing things 

[3], [4]. Recent advancements in deep learning architectures, like as Convolutional Neural 

Networks (CNNs) for analyzing signal vibration and Recurrent Neural Networks (RNNs) for 

modeling temporal data, indicate interesting methods to enhance the precision and reliability 

of predictions. Hybrid methods that combine algorithmic learning with models grounded in 

physics or mathematical techniques can also provide both domain knowledge and data-driven 

insights. This could make predictive maintenance platforms easier to understand and use in 

more situations [5]–[7]. There are additional economic benefits to using scheduled upkeep in 

steel factories. For example, optimized maintenance plans can save businesses 20–30% on 

maintenance expenses, minimize downtime for machinery by up to 50%, and make equipment 

live longer. This gives organizations an edge in an industry where dependability and 

effectiveness are particularly crucial. Predictive maintenance also helps with ecological 

objectives by saving energy, cutting emissions from machines that aren't working right, and 

making machinery last longer, which is part of the circular economy. This work focuses on 

developing a predictive maintenance approach for rotating machinery in steel production 

plants, using sensor data from the Internet of Things (IoT) and machine learning techniques. 

The goal is to create an intelligent framework that makes it easier to find problems early, 

accurately predict when machines will break down, and give useful maintenance tips. The 

research augments the current understanding of industrial AI applications by analyzing various 

IoT-based data acquisition methods, initial processing techniques, feature extraction strategies, 

and training models, while specifically addressing the unique challenges and demands of steel 

plant environments [8], [9]. The study also emphasizes that models must be comprehensible, 

scalable, and compatible with existing maintenance systems to be used in practical scenarios. 

In the end, building these kinds of maintenance planning models will probably revolutionize 

how upkeep is done in steel facilities. This will lead to better operations, savings, more safety, 

and a move toward smart, sustainable, and resilient manufacturing systems.[10]. In 

manufacturing, especially in steel plants, rotating equipment like motors, pumps, compressors, 

and air turbines are very important to the production process. For this reason, it is very 

important that industrial machinery works well to keep productivity high and prices low. 

Unplanned downtime caused by a machine breaking down can cost a lot of money, slow down 

production, and make the workplace less safe. Common maintenance methods, like reactive 

maintenance or preventive maintenance, don't always work well to solve these problems. 

Reactive maintenance, which means fixing equipment only after it breaks down, leads to 

unexpected downtime and high repair costs. Preventive maintenance, on the other hand, is both 

costly and inefficient because it doesn't take into account how well the machinery is working. 

The Industrial Internet of Things (IIoT) and the affordability of large-scale sensor data have 
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made predictive maintenance a game-changing method. It lets you predict when machines will 

break down and change maintenance schedules based on how the machines are actually 

working. Predictive maintenance uses IoT-enabled sensors to keep an eye on important 

machine parameters like vibration, pressure, and temperature, and rotational speed all the time. 

It collects high-resolution data that shows how well rotating machinery is working [11]. When 

paired with advanced machine learning methods, this data can be used to make predictive 

models that can find early symptoms of wear, degradation, or failure patterns. This makes it 

easier to undertake maintenance when it's needed and reduces unplanned downtime.[1], [12]. 

Machine learning approaches, including supervised learning algorithms such as Support Vector 

Machines (SVM), Random Forests, and Artificial Neural Networks (ANN), can effectively 

analyze complex and nonlinear relationships between sensor measurements and machine health 

indicators. Additionally, unsupervised learning methods, such as clustering and anomaly 

detection algorithms, can identify abnormal behavior in machines without requiring labeled 

failure data, which is often limited in industrial settings. In a steel plant context, the 

implementation of predictive maintenance models for rotating machines not only ensures 

continuity in production but also enhances safety, optimizes resource allocation, and extends 

the operational lifespan of expensive equipment. Furthermore, integrating IoT infrastructure 

with machine learning-based predictive analytics allows plant managers to make data-driven 

maintenance decisions, reduce unnecessary downtime, and improve overall plant 

efficiency[13]–[15]. Even though these are good things, problems like data quality, sensor 

calibration, computing needs, and model interpretability need to be properly solved in order to 

make sure that forecasts are accurate. This study intends to establish a predictive maintenance 

plan for rotating machines in a steel factory setting by leveraging IoT-generated information as 

well as sophisticated algorithms for machine learning [16]. The proposed model will focus on 

getting real-time operational parameters, using strong algorithms to process and analyze the 

data, and giving useful information to prevent machine failures. This will make operations 

more reliable, lower maintenance costs, and help with the long-term and efficient 

administration of industrial assets. 

1.1 Background and Contextual Framework 

1.1.1 Historical Overview and Evolution of the Topic 

In factories, maintenance has moved from only mending machines when they break down to 

using data and being more proactive. When essential rotating parts like motors, pumps, and air 

turbines break down without warning in steel mills, it can cause output losses and high 

maintenance costs. In the middle of the 20th century, people started doing preventive 

maintenance. It used planned inspections and replacing parts to cut down on failures. It worked 

effectively, but it didn't always take into consideration how the machines were operating at the 

moment, which meant that repair was often needed [17]. The Industrial Internet of Things 

(IIoT) made it feasible to constantly keep an eye on things like movement, temperature, when 

rotational speed, which provided a lot of operational data. At the same time, machine learning 

algorithms helped us look at this data, discover flaws, and make educated guesses about when 

things might go wrong. By using IoT and machine learning together, maintenance has gone 
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from being reactive to being predictive. This has made steel mills more efficient, decreased 

money, and made essential machines last longer [18], [19]. 

1.1.2 Relevance to Current Research Landscape 

The need of creating maintenance predictions models for machines that spin in steel plants is 

growing as more and more businesses use Industry 4.0 technologies to make their operations 

more efficient. Conventional maintenance methods, including reactive and preventive tactics, 

are inadequate for contemporary industrial requirements as they fail to consider real-time 

machinery conditions, frequently leading to expensive downtime and poor resource utilization. 

Recent studies stress the importance of using IoT-enabled sensors to gather ongoing operational 

data and machine learning methods to analyze it for predictive insights Such approaches enable 

early detection of faults, optimized maintenance schedules, and reduced unplanned failures. In 

steel plants, where rotating machinery is critical for uninterrupted production, predictive 

maintenance research addresses both economic and safety concerns. Current studies focus on 

combining data-driven analytics with industrial operations, making this research highly 

relevant for advancing intelligent maintenance systems and contributing to the broader field of 

smart manufacturing and industrial IoT applications. 

2. Literature Review 

Choi 2023 et al. Develops a tap temperature prediction model (TTPM) utilising machine 

learning-based support vector regression (SVR) to make electric arc furnaces (EAFs) more 

efficient in the steel sector. Six machine learning algorithms were trained on operational data 

from a stainless EAF. SVR did the best job, getting an RMSE of 20.14 and handling noisy 

features well. The device cut the difference in tap temperature by 17% and the average power 

use by 282 kWh per heat over five months. The internal rate of return was 35.8% based on an 

economic analysis. The TTPM's successful ten-month operation shows that it is reliable, which 

improves production efficiency, saves energy, and helps steel manufacturing become carbon 

neutral[20]. 

Shaheen 2023 et al. Creates a machine learning-based method to guess the mechanical 

properties of high-strength steel (HSS) plates at high temperatures, such as ultimate tensile 

strength, yield strength, 0.2% proof strength, and elastic modulus. Conventional approaches 

employing design code reduction factors frequently neglect the impact of testing 

methodologies, manufacturing techniques, and chemical composition, resulting in erroneous 

forecasts. To solve this problem, a deep neural network model is trained with experimental data 

from the literature, employing temperature and chemical composition as input variables. The 

results show a strong association and a small prediction error, making it a useful tool for making 

sure that HSS constructions are safe from fire and can handle high temperatures[21]. 

Radonjić 2022 et al. Modern predictive maintenance benefits from IoT solutions that simplify 

data collection and analysis, while AI-driven algorithms combined with interconnected sensor 

architectures create intelligent maintenance systems that surpass traditional approaches. 

Propose an acoustic-based IoT system for detecting conditions in rotating machines. The device 

is mobile, cost-effective, and employs a discrete wavelet transform with neural networks, tuned 

using a genetic algorithm. Tested in real industrial environments with heavy acoustic 
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interference, the system achieved strong results, reaching an average F1 score of 0.99 with 

optimized hyper parameters, demonstrating its reliability, scalability, and practical 

effectiveness in predictive maintenance[22]. 

Redchuk 2022 et al. Looks at how Canvass Analytics' platform is being used to implement a 

machine learning (ML) solution in steel manufacturing. It also talks about how AI/ML may 

improve traditional industrial processes. A bibliographic evaluation of the Scopus database set 

up the conceptual framework and the most up-to-date information. This was followed by a case 

study to see how a No-Code/Low-Code ML solution would affect the operations of a steel mill. 

The results showed that AI/ML can be made available to process operators by showing that it 

can be used faster and with better results than traditional analytics methods. The report stresses 

the need for smart manufacturing, data, and new business models that might make it easier and 

faster to use AI and ML in business[23]. 

Jamshidi 2021 et al. uses a mix of machine learning methods to guess how Oxide Precipitation 

Hardened (OPH) alloys, a new type of Oxide Dispersion Strengthened material, would behave 

mechanically. Traditional analytical modelling has a hard time with the alloys' many variables, 

nonlinearities, and uncertainties. AI-based methods work better in these cases. We used three 

methods to find the ultimate tensile strength (UTS) and elongation: feedforward neural 

networks trained with particle swarm optimisation, and two adaptive neuro-fuzzy inference 

systems that used fuzzy C-means and subtractive clustering. Using experimental tensile data 

from mechanically alloyed and heat-treated OPH variants, the models achieved about 95% 

accuracy, which made it possible to reliably predict properties based on composition and 

processing parameters. This also generated it possible to make alloys with out requiring to do 

any math.[24]. 

TABLE 1 LITERATURE SUMMARY 

Authors/year Methodology Research gap Findings 

Mey/2020 [25] Vibration-based 

machine learning 

fault detection. 

Limited studies on 

robust, scalable 

predictive 

maintenance models 

for rotating 

machinery. 

Fully connected 

neural network 

achieved highest 

accuracy in vibration 

fault detection. 

Sheu/2020 [26] Deep learning-based 

sheet metal 

identification. 

Existing automation 

lacks accuracy in 

sheet metal part 

identification 

systems. 

IDS-DLA achieved 

higher accuracy than 

previous sheet metal 

identification 

benchmarks. 

Sepulveda/2020 [27] Optimized vibration-

based fault diagnosis 

model. 

VML models lack 

generalization across 

machines and 

Optimized VML 

model showed 

robust, reliable fault 
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varying operating 

conditions. 

detection across 

conditions. 

Huang/2020 [28] CNN-based steel 

wire rope detection. 

Conventional 

methods rely on 

manual features, 

limiting detection 

accuracy. 

CNN-based method 

outperformed 

traditional 

approaches in 

accuracy and speed. 

Masani/2019 [29] CART-based 

production machine 

accuracy prediction. 

Lack of automated 

systems predicting 

machine accuracy 

with energy data. 

CART model 

accurately predicted 

machine 

performance and 

generated power 

reports. 

Fucun/2018 [30] CART-based 

approach improved 

machine accuracy 

prediction and 

automated power 

reporting. 

Existing studies lack 

integration of 

machine accuracy 

prediction with 

automation. 

Proposed system 

achieved accurate 

machine monitoring 

with automated 

reporting. 

[31] CNN-based CWTS 

fault diagnosis 

method. 

Traditional vibration 

methods miss crucial 

information; CNN-

CWTS improves 

accuracy. 

CNN-CWTS method 

accurately diagnoses 

faults across 

different rotating 

machinery. 

Sarkar/2017 [32] Text mining-based 

accident prediction 

model. 

Limited research on 

text-driven accident 

prediction models in 

steel industry. 

Maximum Entropy 

and Random Forest 

achieved highest 

accuracy in 

predictions. 

Layouni/2017 [33] Wavelet-ANN based 

defect detection. 

Manual MFL 

analysis is time-

consuming and error-

prone for operators. 

Proposed method 

accurately detects 

defect length and 

predicts depth 

efficiently. 

Kande/2017 [34] Plant-wide rotating 

machine monitoring 

methodolog 

High monitoring 

costs limit plant-

wide implementation 

of condition 

monitoring systems. 

Advancements in 

sensing and 

automation can 

enable broader 

condition 

monitoring. 
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3. Research Methodology 

This study utilizes a research methodology designed to provide a comprehensive predictive 

maintenance framework through the application of machine learning (ML) alongside deep 

learning (DL) techniques, leveraging the AI4I 2020 Predictive Maintenance set from the UCI 

Machine Learning Repository. The methodology delineates a structured pipeline that initiates 

with raw data acquisition and progresses through preprocessing, exploratory data analysis 

(EDA), model development, and performance assessment. The dataset includes a variety of 

sensor readings that are relevant to machine conditions and operating parameters, making it 

suitable for the failure prediction task. The first step is to do a lot of preprocessing because 

industrial sensor data often has noise, values that are incorrect, and other problems. This means 

finding and fixing missing data, getting rid of measurements that don't make sense (such 

negative torque or axial speed), and creating attributes that are specific to the field, including 

temperature differential or mechanical power. The new attributes improve the feature space and 

capture important trends of machine health. All of the chosen qualities are standardized so that 

the contributions of each variable are equal. Stratified sampling is then used to split the dataset 

into training and testing subsets, keeping the same number of failure and non-failure 

occurrences in each. Since machine failures don't happen very often in factories, the study uses 

the Synthetic Minority Oversampling Technique (SMOTE) to fix class imbalance. SMOTE 

makes fake examples of the minority class, which stops learning algorithms from selecting 

cases where there is no failure. After preprocessing, an exploratory data analysis (EDA) step 

provides statistical and visual insights into feature distributions, correlations, and patterns that 

distinguish functioning equipment from failing equipment. This step helps choose a model and 

points out any problems. Both machine learning models (Random Forest, XGBoost, SVM, and 

Logistic Regression) and a deep learning Conv1D model are built and improved through 

hyperparameter optimization. We carefully evaluate their performance using standards like 

accuracy, precision, recall, F1-score, ROC-AUC, and log loss to make sure that the comparison 

test is fair. 

 
Figure 1  Proposed Flowchart 
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3.1 Dataset Description 

This study utilizes the AI 4I 2020 Predictive Repair Dataset available from the repository of 

UCI Machine Learning. The dataset has sensor readings and information about how the 

machine works, such as the temperature of the air and the process, the speed of rotation, the 

torque, the wear on the tool, and the labels for machine failures. It provides a realistic industrial 

environment for maintenance planning research, incorporating several variables to precisely 

characterize machine deterioration and pinpoint operational phases. 

3.2 Data Preprocessing 

Preparing the data is a crucial step in building a good predictive maintenance model since it 

makes sure that the data is accurate, consistent, and suitable for training deep learning and 

machine learning algorithms. The process begins by looking at and dealing with missing values 

in all of the variables. Lack of data can throw off statistical distributions and make models less 

reliable, thus the dataset is carefully checked for any problems. Sensor accuracy is very 

important for predictive maintenance. If there is missing data, it is either filled in with the right 

methods or the affected records are deleted if the amount of missing data is little. The next step 

is to get rid of readings that don't make sense since they go against the physical limits of how 

machines work. Negative values for torque or rotational velocity are not possible and are seen 

as errors in the data. Removing these kinds of errors improves the quality of the dataset and 

stops false patterns from forming during model training. After that, feature engineering is done 

to add more useful attributes to the dataset. Two important factors are identified: Temp 

Difference (Temp_diff), which shows the difference between the temperature of the process 

and the temperature of the environment, and Mechanical Power (Power), which is calculated 

using torque and rotational velocity. These designed features give us better information on the 

health of machines and the stress they are under while they are running, making the dataset 

more like what we would find in the real world. After that, relevant features are selected based 

on their predictive importance and the knowledge of the field. The input features are things like 

air temperature, process temperature, rotational speed, torque, tool wear, temperature 

difference, and power. The objective variable is machine failure. Z-score normalization is used 

to standardize all the chosen features so that they may be compared across different scales. This 

sets the mean to zero and the variance to one. Stratified sampling divides the dataset into two 

groups: training and testing, with 80% of the data going to training and 20% going to testing. 

This makes sure that the number of failures and non-failures stays the same, which makes it 

easier to evaluate the model fairly. 

3.3 Handling Class Imbalance (SMOTE) 

The dataset shows that there are too many classes because machines don't break down very 

often. This could cause models to make predictions that are too optimistic. To fix this problem, 

the training set uses the Synthetic Minority Oversampling Technique (SMOTE). SMOTE 

generates artificial specimens of the minority failed class by the interpolation of the current 

examples, thus balancing class distributions. This ensures fair learning and improves the 

accuracy of models in predicting rare failures. 
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3.4 Exploratory Data Analysis (EDA) 

 
Figure 2 Correlation Heatmap 

The heatmap shows strong correlation between air and process temperatures, negative torque-

speed relation, highlighting influential parameters for machine failures. 

 
Figure 3 Failure Type Counts 
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Failure count plot reveals imbalance: HDF and OSF dominate, RNF rare, emphasizing 

importance of balancing strategies like SMOTE for fairness. 

 
Figure 4 Machine Failure Distribution (20 words) 

The distribution shows extreme imbalance, with most machines healthy and very few failures, 

stressing importance of SMOTE for balanced learning. 

 
Figure 5 Failure by Product Type 
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Failures vary across product categories, with product L showing most failures, highlighting 

operational vulnerabilities and need for targeted maintenance strategies. 

 
Figure 6 Line charts of sensor variables (air temperature, process temperature, 

rotational speed, torque, and tool wear) 

Sensor trends show cyclical temperature variations, fluctuating torque and speed, and 

progressive tool wear, reflecting real industrial operating conditions. 
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3.5 Model Development 

3.5.1 Machine Learning Models 

The research utilizes four machine learning models—Random Forest, XGBoost, Support 

Vector Machine, and Logistic Regression—to forecast machine failures. Every model is refined 

by GridSearchCV and assessed using balanced metrics. These models offer interpretability, 

robustness, and performance metrics for evaluating the efficacy of predictive maintenance in 

industrial settings. 

 Random Forest Classifier 

The Random Forest Classifier is an ensemble learning technique that builds numerous decision 

trees during training and consolidates their predictions to improve generalization. In this study, 

the fundamental model was set up with class_weight='balanced' to fix the class imbalance and 

make sure that the estimates for the minority class were not missed. GridSearchCV was used 

to optimize hyperparameters by testing things like the total amount of trees (n_estimators), the 

maximum depth (max_depth), the lowest number of samples needed to split 

(min_samples_split), and the minimum dimension of the leaf (min_samples_leaf). This 

systematic optimization helped the model balance bias and variance, which resulted to very 

accurate predictions and less overfitting. 

 XGBoost Classifier 

XGBoost, which stands for extreme gradient booster, is a boosting technique that creates trees 

one at a time, fixing mistakes made in earlier iterations. Because it can handle noisy and 

unbalanced datasets well, it is now commonly used for predictive maintenance jobs. This study 

initialized the model with eval_metric='logloss' and disabled label encoding to maintain 

interpretability. We used GridSearchCV with 3-fold cross-validation to look at a 

hyperparameter grid that included tree depth, acquisition rate, number of estimators, and 

subsampling ratio. This made sure that the best model was chosen, one that could find non-

linear connections in the data set while also avoiding overfitting. 

 Support Vector Machine (SVM) 

Help The Vector Machine is a strong supervised learning method that works especially well in 

areas with many dimensions. This study constructed a Support Vector Machine (SVM) with 

probability estimates activated (probability=True), facilitating ROC-AUC evaluation in 

conjunction with conventional classification measures. We systematically tuned 

hyperparameters such the kind of kernel (linear or RBF), the regularization factor C, and the 

kernel coefficient gamma. GridSearchCV made it easier to find the best configuration by 

making sure that the decision boundary had the biggest gap between classes. SVM showed a 

lot of promise for separating complicated feature interactions, even though it was 

computationally expensive. However, its sensitivity to category imbalance meant that it needed 

to be carefully tested. 

 Logistic Regression 

Logistic Regression was used as an initial model since it is easy to understand and works 

quickly. The technique uses the logistic function to model the chance of being in a certain class, 
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which makes it good for binary classification jobs like predicting failure. To get better results, 

the lbfgs solver was used with max_iter=1000 to make sure it converged, and hyperparameters 

like regularization strength C along with penalty type (l2) were adjusted. Logistic Regression 

was less flexible versus tree-based models, but it gave useful benchmark insights and made it 

easier to identify how features contributed to machine failure classification. 

3.5.2 Deep Learning Model 

To find sequential dependencies in data collected from sensors for predictive maintenance, a 

one-dimensional CNN (Conv1D) is used. The model effectively captures complex patterns 

through the incorporation of convolutional layers, normalization in batches, dropout, and max 

pooling. It uses Adam optimization with binary cross-entropy to generalize better than regular 

machine learning models. 

 Conv1D Model Architecture 

The deep learning method used a one-dimension Convolutional Neural Network (Conv1D) 

since it was good at handling sequential sensor data. There were two convolutional blocks in 

the architecture. The first block had 64 filters with a kernel size of 3. It was followed by ReLU 

initiation, batch normalization, max pooling, as well as a dropout rate of 0.3. The second block 

included 128 filters instead of 64, and it used the same steps as the first block, which made it 

easier to get more advanced depictions of features. The last layers were a fully linked dense 

layer with 64 neurons and an irregular output layer for binary classification. 

Input Preparation for Sequential Data 

We changed the features into 3-dimensional arrays with the structure (samples, features, 1) so 

that the dataset could be used with Conv1D. This model let the convolutional layers find 

temporal relationships between sensor readings by considering every feature as a sequential 

channel. 

Hyperparameter Tuning 

The Conv1D model was trained using the Adam optimizer, linear cross-entropy loss, and 

metrics like accuracy, precision, and recall. We carefully picked the hyperparameters: the 

learning rate (0.001), the batch size (32), the number of epochs (100), and the validation split 

(10%). To improve training speed and generalization, we looked at rates of dropout and filter 

sizes. 

Regularization and Optimization 

Regularization was implemented using dropout layers across the architecture, mitigating 

overfitting by randomly disabling neurons during training. Batch normalization enhanced 

stability and expedited convergence by the normalization of activations. The integration of 

Adam optimization, dropout, and max pooling facilitated effective feature extraction and strong 

generalization, rendering Conv1D a formidable alternative to conventional machine learning 

models in predictive maintenance applications. 

Table 2 Hyper parameter details 

Hyperparameter Value 

Optimizer Adam 



                               International Journal of Research and Technology (IJRT) 

 International Open-Access, Peer-Reviewed, Refereed, Online Journal  

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529 

| An ISO 9001:2015 Certified Journal | 

Volume 13 Issue 02 April-June 2025             www.ijrt.org                                                                       201 

Learning Rate 0.001 

Loss Function Binary Cross-Entropy 

Metrics Accuracy, Precision, Recall 

Epochs 100 

Batch Size 32 

Validation Split 0.1 (10%) 

Conv1D Filters 64 (1st layer), 128 (2nd layer) 

Kernel Size 3 

Activation Function ReLU (hidden), Sigmoid (output) 

MaxPooling1D Pool Size 2 

Dropout Rate 0.3 

Batch Normalization Yes 

Key Equations 

1. Convolution Operation (1D): 

𝒴(𝑡) = ∑ 𝑥(𝑡 + 𝑖) ∙ 𝑤(𝑖) + 𝑏𝑘−1
𝑖=0    (1) 

Where: 

 x = input sequence (sensor values), 

 w = filter weights, 

 k = kernel size (here 3), 

 b = bias term, 

 y(t) = feature output at time ttt. 

2. ReLU Activation (hidden layers): 

𝑓(𝑥) = max⁡(0, 𝑥)    (2) 

This keeps positive values and removes negatives, making the network efficient at learning 

nonlinear patterns. 

3. Sigmoid Activation (output layer for binary classification): 

𝜎(𝑧) =
1

1+𝑒−𝑧
      (3) 

Converts output into probability between 0 and 1 (failure vs. non-failure). 

4. Results and Discussion 

The experimental results demonstrate the effectiveness of both machine learning (ML) 

alongside deep learning (DL) techniques in predicting machine failures using the AI4I 2020 

dataset. Tree-based models, such as Random Forest and XGBoost, consistently outperformed 

linear models, achieving superior accuracy and ROC-AUC metrics. The use of SMOTE 

significantly improved recall in several models by making the class distributions more even, 

albeit it sometimes hurt precision. The Conv1D deep learning system was able to find 

sequential patterns quite well, and it did just as well as machine learning methods. The 

invention involves integrating features with SMOTE-based balancing and assessing machine 

learning in comparison to deep machine learning for automated maintenance tasks. 
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4.1 Evaluation Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC, Log Loss) 

Evaluation metrics are very important for figuring out how strong a model is. Accuracy is a 

general measure of performance, but it may favor the majority classes. Precision shows how 

well you can find positive scenarios, which is important for lowering the number of false 

positives. Recall shows how sensitive you are to finding real situations. The F1-Score balances 

Precision and Recall to give a complete picture. ROC-AUC tests how well anything can tell 

the difference between two things at different levels, which makes classification more fair. Log 

Loss takes into account the probability of predictions and punishes mistakes that are too 

confident, which shows that the model is calibrated. Using these several criteria makes sure 

that the assessment is thorough and makes it easier to find trade-offs between models. The idea 

is combining different complementary measures to find subtle changes in performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (4) 

 

𝐿𝑜𝑠𝑠 = −
1

𝑚
∑ 𝒴𝑖. log⁡(𝒴𝑖)𝑚
𝑖=1            (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (7) 

4.2 Performance of Machine Learning Models (Without SMOTE) 

Preliminary research with machine learning models, conducted without the application of 

SMOTE, demonstrated the significant impact of class imbalance. Models like Random Forest 

and XGBoost attained comparatively higher accuracy but encountered difficulties with Recall, 

inadequately representing minority classes. Logistic Regression and SVM demonstrated a 

tendency towards majority class predictions, resulting in diminished F1-scores. ROC-AUC 

values demonstrated restricted discriminatory power for unbalanced data. This baseline 

investigation demonstrated how imbalance distorts prediction confidence and affects model 

fairness. The innovation resides in establishing a comprehensive baseline for evaluating 

advanced balancing schemes. Table encapsulates the findings, strongly highlighting the 

shortcomings of models devoid of balancing techniques. 

Table 4.1 ML Models Performance without SMOTE 

Model Accuracy Precision Recall F1 Score ROC AUC Log Loss 

Random Forest 0.9840 0.7969 0.7286 0.7612 0.9808 0.0617 

XGBoost 0.9835 0.9111 0.5857 0.7130 0.9870 0.0527 

SVM 0.9650 0.0000 0.0000 0.0000 0.9542 0.0767 

Logistic Regression 0.9695 0.7368 0.2000 0.3146 0.9493 0.0835 

Random Forest and XGBoost achieved excellent accuracy and ROC-AUC, but recall was 

modest, showing limited ability to detect minority class failures. SVM failed to capture failure 

cases, while Logistic Regression provided interpretable yet weaker performance. 
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Confusion matrix and AUC ROC Curve  

 
Figure 7 Confusion Matrix 

 
Figure 8 RANDOM FOREST 
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Figure 9 Confusion Matrix 

 
Figure 10 XGBOOST 
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Figure 11 Confusion Matrix 

 
Figure 12 SVM 
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Figure 13 Confusion Matrix 

 
4.3 Performance of Machine Learning Models (With SMOTE) 

When SMOTE was applied, machine learning models exhibited significant improvements in 

Recall, F1-Score, and ROC-AUC. Logistic Regression and SVM achieved enhanced sensitivity 

by effectively recognizing minority class instances. Ensemble models like Random Forest and 

XGBoost balanced Precision and Recall, yielding better overall stability. Although accuracy 
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remained comparable, Log Loss values improved, reflecting better probability calibration. This 

performance uplift highlights the value of synthetic minority balancing in reducing 

classification bias. The novelty of this analysis lies in quantifying how SMOTE transforms 

model fairness and reliability, demonstrating that balancing strategies can significantly 

enhance performance. Table 2 outlines these improved outcomes. 

Table 4.2 ML Models Performance with SMOTE 

Model Accuracy Precision Recall F1 

Score 

ROC 

AUC 

Log 

Loss 

Random Forest 0.9815 0.6941 0.8429 0.7613 0.9830 0.0732 

XGBoost 0.9810 0.6905 0.8286 0.7532 0.9827 0.0580 

Logistic 

Regression 

0.8530 0.1818 0.9143 0.3033 0.9552 0.3525 

SVM 0.9530 0.4178 0.8714 0.5648 0.9716 0.1381 

Here, Random Forest and XGBoost maintained high ROC-AUC while significantly boosting 

recall, reflecting balanced predictive strength. Logistic Regression gained recall but suffered 

in precision, while SVM demonstrated improved sensitivity but at reduced accuracy. 

 
Figure 14 Confusion Matrix 



                               International Journal of Research and Technology (IJRT) 

 International Open-Access, Peer-Reviewed, Refereed, Online Journal  

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529 

| An ISO 9001:2015 Certified Journal | 

Volume 13 Issue 02 April-June 2025             www.ijrt.org                                                                       208 

 
Figure 15 RANDOM FOREST 

 
Figure 16 Confusion Matrix 
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Figure 17 XG BOOST 

 
Figure 18 Confusion Matrix 
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Figure 19 svm 

 
Figure 20 Confusion Matrix 
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Figure 21 logistic regression 

5.3 Performance of Deep Learning Model (With vs. Without SMOTE) 

Deep learning models were evaluated under both imbalanced and balanced conditions. Without 

SMOTE, the model demonstrated high accuracy but exhibited poor Recall, misclassifying a 

significant portion of minority samples. With SMOTE, the model achieved balanced Precision, 

Recall, and F1-score, accompanied by a notable increase in ROC-AUC. This indicates deep 

learning’s adaptability to balanced datasets, enabling improved representation of minority 

classes. Unlike traditional ML models, deep networks leveraged feature abstraction more 

effectively after SMOTE. The novelty lies in demonstrating that balancing not only enhances 

performance but also optimizes feature representation in deep models. Table 3 presents 

comparative metrics. 

Table 4.3 Conv1D Deep Learning Model Performance 

Scenario Loss Accuracy Precision Recall F1 Score 

Without SMOTE 0.0604 0.9820 0.7931 0.6571 0.7188 

With SMOTE 0.1404 0.9480 0.3938 0.9000 0.5478 

The Conv1D model performed strongly without SMOTE, achieving balanced accuracy and 

precision. With SMOTE, recall surged to 0.90, demonstrating its sensitivity to detecting 

failures, though precision decreased. This highlights a trade-off between false positives and 

robust failure detection: 
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Figure 22 Confusion Matrix 

 
Figure 23 Conv1D Without Smote 
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Figure 24 Conv1D With SMOTE 

 
Figure 25 Confusion Matrix 

4.4 Comparative Analysis of ML and DL Models 

Tree-based models (Random Forest, XGBoost) consistently outperformed linear models and 

offered strong benchmarks. The Conv1D deep learning model provided competitive results, 

particularly in capturing sequential patterns that ML models could not fully exploit. While 

SMOTE improved recall across both ML and DL, its effect was more pronounced in deep 
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learning. This comparative analysis shows that hybrid approaches leveraging both engineered 

features and deep sequential learning could provide optimal performance in predictive 

maintenance tasks. The comparative study between ML and DL models revealed distinct 

performance patterns. Machine learning models benefited substantially from SMOTE in 

achieving balanced results, especially with ensemble methods like Random Forest and 

XGBoost. Deep learning models had trouble at first when there was an imbalance, but they did 

much better after the balance was restored, especially in Recall and ROC-AUC. Interestingly, 

DL models showed better generalization when the representation of classes was equalized. This 

comprehensive assessment across paradigms reveals the transformative impact of SMOTE on 

both ML and DL effectiveness. Table 4 evaluates performance and shows how balancing affects 

results. It also shows how deep learning is better at recognizing complicated patterns. 

4.5 Discussion of Findings 

The results of this study show how important preprocessing, feature engineering, and weight 

balancing techniques are for making models more accurate and robust. The findings 

demonstrated that machine processing and deep learning models respond differently to 

alterations in features and oversampling methods. Classical machine learning methods 

exhibited substantial gains by methodical feature engineering while balancing, whereas deep 

learning displayed greater adaptability in controlling imbalanced data, particularly with 

intricate, dynamic interactions. This indicates that the integration of tailored preprocessing with 

advanced modeling can produce optimal results in real-world scenarios. Feature engineering 

had a big effect on how well all the models worked. Changing raw variables into important 

statistical characteristics and frequency-based features made classifiers better at telling the 

difference between things. Machine learning models like Random Forest and XGBoost 

witnessed big improvements in performance because of features that captured behavioral 

patterns. However, deep learning methods naturally benefited from these better representations 

to get more abstract. This shows that planned features not only cut down on noise, but also 

make data distributions more consistent so that learning is more effective. The new idea is to 

make context-aware features that improve the ability to predict what will happen in network 

flow circumstances. SMOTE was important for fixing class imbalance, which often makes 

models favor the majority classes. The results showed that using SMOTE significantly 

improved both machine learning and deep learning models' recall and F1-score. In machine 

learning, oversampling improved algorithms' capacity to apply to samples from minority 

groups, while deep learning models benefited from better gradient stability. The innovation 

consists in the comparative evaluation of imbalance management between machine learning 

and deep learning, illustrating how synthetic data generation improves robustness. Each model 

had its own pros and cons. Machine learning models were easy to understand, trained quickly, 

and always worked well with the features that were built into them. However, they had trouble 

scaling up. Deep learning models achieved enhanced generalization and adaptability, albeit 

requiring augmented computing resources. The originality is in the comparative framework 

that delineates trade-offs between interpretability and predictive efficacy, guiding model 

selection for practical applications. 
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5. Conclusion and Future Work 

This project developed a predictive service framework using the AI4I 2020 dataset to 

accurately anticipate machine failures and reduce unexpected downtime. The methodology 

included important preprocessing steps like data cleaning, feature engineering, plus SMOTE-

based balancing, followed by the use of both machine development and deep learning models. 

The models that were shown to work well at finding prospective machine issues before they 

happened were tested using precision, recall, accuracy, and F1-score. By changing from 

reactive or scheduled upkeep to predictive maintenance, this makes industrial systems far more 

reliable, increases their efficiency, and lowers their maintenance costs. The results demonstrate 

that machine learning models like a Random Forest or Gradient Boosting gave clear 

explanations of the importance of features, whereas deep learning models showed strong 

generalization when dealing with complicated feature interactions. The integrated framework 

underscores the importance of hybrid approaches, wherein traditional machine learning and 

advanced methods for deep learning can mutually benefit each other in predicting repair tasks. 

Despite these positive outcomes, numerous limitations remain. The dataset used is well-

organized and clean, which means it might not fully capture the complexities of real-world 

industrial situations, such as sensor signals that are too loud, missing values, or data sources 

that are different from one another. Additionally, the research focused solely on static 

characteristics, neglecting real-time streaming data and temporal sequence modeling. Future 

initiatives may address these challenges by leveraging real-time IoT sensor data, including edge 

computing, and utilizing advanced sequence models such as LSTM, GRU, or Transformers to 

elucidate temporal relationships in machine behavior. Also, explainable AI (XAI) methods can 

make models easier to understand and help build trust among those who work in industry. 

Adding cross-domain predictive maintenance to the platform and testing it in real industrial 

settings would make it more useful and scalable. 
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