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Abstract — This study Predictive maintenance seeks to anticipate equipment breakdowns and
reduce unplanned downtime through the utilization of sensor data and sophisticated modeling
techniques. This study introduces a detailed pipeline utilizing the AI41 2020 Predictive
Maintenance Dataset, a high-caliber synthetic industrial dataset that includes air and process
temperatures, rotational speed, torque, tool wear, and failure labels from the UCI Machine
Learning Repository. Our methodology includes thorough preprocessing, which involves the
elimination of inaccurate measurements, the generation of engineering characteristics such as
temperature difference and mechanical power, feature standardization, and stratified train-test
division. Class imbalance is mitigated using SMOTE, which equalizes the proportion of failure
and non-failure cases. We develop and enhance various machine learning models (Random
Forest, XGBoost, SVM, Logistic Regression) and a Conv1D deep learning model specifically
designed for sequential sensor data. Model performance is assessed using metrics like accuracy,
precision, recall, F1-score, ROC-AUC, and log loss. Results indicate that Random Forest and
XGBoost achieve good accuracy and balanced detection, whereas SMOTE markedly improves
recall. The Conv1D network demonstrates significant vulnerability to failures, especially when
class balancing is implemented. The innovation consists of combining domain-specific feature
engineering with sophisticated oversampling methods and evaluating machine learning and
deep learning algorithms on a practical maintenance dataset. Future endeavors will concentrate
on implementing the model in real-time industrial settings, investigating hybrid architectures
that integrate interpretability with sequential pattern learning, and assessing model robustness
using live maintenance data.

Keywords- Predictive Maintenance, Convolutional Neural Network (ConvlD), Machine
Learning and Deep Learning, Industrial 10T (110T) and Rotating Machinery Fault Detection.

Volume 13 Issue 02 April-June 2025 www.ijrt.org 187


mailto:sbisht2000@gmail.com
mailto:surendracse221@osgu.ac.in
mailto:saurabh.charaya@gmail.com
mailto:drrachnamehta@osgu.ac.in

International Journal of Research and Technology (IJRT)
International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

1. Introduction

The steel industry is one of the biggest and most energy-intensive in the world. It depends on
rotating machines like motors, pumps, fans, turbines, compressors, and gearboxes to keep
running all the time. These machines are the backbone of production processes because they
keep materials and energy flowing without stopping. However, these machines are very likely
to break down unexpectedly because they are used in harsh conditions, carry heavy loads,
vibrate, and get hot. This not only stops production, but it also costs a lot of money, puts people
at risk, and makes operations less efficient. In steel plants, traditional maintenance methods
like reactive maintenance (where repairs are made after a failure) or preventive maintenance
(where servicing is done on a regular basis no matter what the equipment's actual condition is)
often don't work and cost too much because they either don't stop unplanned downtime or they
cause unnecessary maintenance work. In this situation, predictive maintenance (PdM) has
become a game-changing method that uses the combination of Internet of Things (IoT)
technologies and advanced machine learning algorithms to predict when equipment will break
down before it happens. This makes maintenance schedules more efficient, cuts down on
downtime, lengthens the life of machines, and keeps production going without a hitch. IoT-
enabled sensors can be put on spinning machinery to collect, send, and store a steady stream
of real-time data, like vibration signals, temperature measurements, noise emissions,
lubrication content, and electrical parameters [1]. This is the first time we've ever been able to
see how well the machines are performing. When you combine this vast amount of machine
data with machine learning approaches, you can uncover little patterns and strange things that
could be signals of issues before they emerge. Traditional monitoring systems might not be
able to do this. Support Vector Machines, Random Forests, gradient boosters, and deep
networks are examples of machine learning models that can work with complicated
multifaceted sensor data, find non-linear relationships, and offer accurate predictions about the
remaining useful life (RUL) and prospective failure mechanisms of rotating equipment.
Preventive maintenance in steel plants not only makes the equipment more reliable, but it helps
the plants accomplish their goals for energy efficiency, resource optimization, and
sustainability by reducing waste, downtime, and better production planning [2]. The Industry
4.0 paradigm has also made it easier to use smart manufacturing solutions. These technologies
utilize AL, IoT, and big data analytics to create smart decision-making systems that can adapt
in real time. Predictive maintenance that uses machine learning, the Internet of Things, and
others is very helpful for fixing problems like uneven load distribution in rolling mills,
induction motors that get too hot, pumping systems that have bearing failures, coupled with
blowers that vibrate too much in steel plants, where retaining things running smoothly is very
important. If these flaws aren't found, they can lead to very bad system failures. As high-
frequency IoT sensor data becomes more common, it's increasingly vital to use advanced
feature extraction and signal processing methods, like time-domain, frequency-domain, and
time—frequency analyses. This makes sure that Al algorithms are trained on features that are
useful & representative, which makes fault classification and prediction more accurate. Making
a good preventative care model for rotating machines in steel plants is hard, even though it has
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a lot of potential. This is because it has to deal with noisy and high-dimensional data, make
sure that multiple Internet of Things (IoT) devices can work together, manage large-scale data
storage, or deal with privacy and cybersecurity issues. In addition, real-world industrial
environments often deal with changing operational circumstances, changing loads, and outside
interruptions. So, it is important to create machine learning models that are strong, flexible,
and able to transfer knowledge between different types of machines and ways of doing things
[3], [4]. Recent advancements in deep learning architectures, like as Convolutional Neural
Networks (CNNs) for analyzing signal vibration and Recurrent Neural Networks (RNNs) for
modeling temporal data, indicate interesting methods to enhance the precision and reliability
of predictions. Hybrid methods that combine algorithmic learning with models grounded in
physics or mathematical techniques can also provide both domain knowledge and data-driven
insights. This could make predictive maintenance platforms easier to understand and use in
more situations [5]—[7]. There are additional economic benefits to using scheduled upkeep in
steel factories. For example, optimized maintenance plans can save businesses 20—-30% on
maintenance expenses, minimize downtime for machinery by up to 50%, and make equipment
live longer. This gives organizations an edge in an industry where dependability and
effectiveness are particularly crucial. Predictive maintenance also helps with ecological
objectives by saving energy, cutting emissions from machines that aren't working right, and
making machinery last longer, which is part of the circular economy. This work focuses on
developing a predictive maintenance approach for rotating machinery in steel production
plants, using sensor data from the Internet of Things (IoT) and machine learning techniques.
The goal is to create an intelligent framework that makes it easier to find problems early,
accurately predict when machines will break down, and give useful maintenance tips. The
research augments the current understanding of industrial Al applications by analyzing various
IoT-based data acquisition methods, initial processing techniques, feature extraction strategies,
and training models, while specifically addressing the unique challenges and demands of steel
plant environments [8], [9]. The study also emphasizes that models must be comprehensible,
scalable, and compatible with existing maintenance systems to be used in practical scenarios.
In the end, building these kinds of maintenance planning models will probably revolutionize
how upkeep is done in steel facilities. This will lead to better operations, savings, more safety,
and a move toward smart, sustainable, and resilient manufacturing systems.[10]. In
manufacturing, especially in steel plants, rotating equipment like motors, pumps, compressors,
and air turbines are very important to the production process. For this reason, it is very
important that industrial machinery works well to keep productivity high and prices low.
Unplanned downtime caused by a machine breaking down can cost a lot of money, slow down
production, and make the workplace less safe. Common maintenance methods, like reactive
maintenance or preventive maintenance, don't always work well to solve these problems.
Reactive maintenance, which means fixing equipment only after it breaks down, leads to
unexpected downtime and high repair costs. Preventive maintenance, on the other hand, is both
costly and inefficient because it doesn't take into account how well the machinery is working.
The Industrial Internet of Things (IIoT) and the affordability of large-scale sensor data have
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made predictive maintenance a game-changing method. It lets you predict when machines will
break down and change maintenance schedules based on how the machines are actually
working. Predictive maintenance uses loT-enabled sensors to keep an eye on important
machine parameters like vibration, pressure, and temperature, and rotational speed all the time.
It collects high-resolution data that shows how well rotating machinery is working [11]. When
paired with advanced machine learning methods, this data can be used to make predictive
models that can find early symptoms of wear, degradation, or failure patterns. This makes it
easier to undertake maintenance when it's needed and reduces unplanned downtime.[1], [12].
Machine learning approaches, including supervised learning algorithms such as Support Vector
Machines (SVM), Random Forests, and Artificial Neural Networks (ANN), can effectively
analyze complex and nonlinear relationships between sensor measurements and machine health
indicators. Additionally, unsupervised learning methods, such as clustering and anomaly
detection algorithms, can identify abnormal behavior in machines without requiring labeled
failure data, which is often limited in industrial settings. In a steel plant context, the
implementation of predictive maintenance models for rotating machines not only ensures
continuity in production but also enhances safety, optimizes resource allocation, and extends
the operational lifespan of expensive equipment. Furthermore, integrating IoT infrastructure
with machine learning-based predictive analytics allows plant managers to make data-driven
maintenance decisions, reduce unnecessary downtime, and improve overall plant
efficiency[13]-[15]. Even though these are good things, problems like data quality, sensor
calibration, computing needs, and model interpretability need to be properly solved in order to
make sure that forecasts are accurate. This study intends to establish a predictive maintenance
plan for rotating machines in a steel factory setting by leveraging loT-generated information as
well as sophisticated algorithms for machine learning [16]. The proposed model will focus on
getting real-time operational parameters, using strong algorithms to process and analyze the
data, and giving useful information to prevent machine failures. This will make operations
more reliable, lower maintenance costs, and help with the long-term and efficient
administration of industrial assets.

1.1 Background and Contextual Framework

1.1.1 Historical Overview and Evolution of the Topic

In factories, maintenance has moved from only mending machines when they break down to
using data and being more proactive. When essential rotating parts like motors, pumps, and air
turbines break down without warning in steel mills, it can cause output losses and high
maintenance costs. In the middle of the 20th century, people started doing preventive
maintenance. It used planned inspections and replacing parts to cut down on failures. It worked
effectively, but it didn't always take into consideration how the machines were operating at the
moment, which meant that repair was often needed [17]. The Industrial Internet of Things
(IIoT) made it feasible to constantly keep an eye on things like movement, temperature, when
rotational speed, which provided a lot of operational data. At the same time, machine learning
algorithms helped us look at this data, discover flaws, and make educated guesses about when
things might go wrong. By using IoT and machine learning together, maintenance has gone

Volume 13 Issue 02 April-June 2025 www.ijrt.org 190



International Journal of Research and Technology (IJRT)
International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

from being reactive to being predictive. This has made steel mills more efficient, decreased
money, and made essential machines last longer [18], [19].

1.1.2 Relevance to Current Research Landscape
The need of creating maintenance predictions models for machines that spin in steel plants is
growing as more and more businesses use Industry 4.0 technologies to make their operations
more efficient. Conventional maintenance methods, including reactive and preventive tactics,
are inadequate for contemporary industrial requirements as they fail to consider real-time
machinery conditions, frequently leading to expensive downtime and poor resource utilization.
Recent studies stress the importance of using loT-enabled sensors to gather ongoing operational
data and machine learning methods to analyze it for predictive insights Such approaches enable
early detection of faults, optimized maintenance schedules, and reduced unplanned failures. In
steel plants, where rotating machinery is critical for uninterrupted production, predictive
maintenance research addresses both economic and safety concerns. Current studies focus on
combining data-driven analytics with industrial operations, making this research highly
relevant for advancing intelligent maintenance systems and contributing to the broader field of
smart manufacturing and industrial IoT applications.
2. Literature Review
Choi 2023 et al. Develops a tap temperature prediction model (TTPM) utilising machine
learning-based support vector regression (SVR) to make electric arc furnaces (EAFs) more
efficient in the steel sector. Six machine learning algorithms were trained on operational data
from a stainless EAF. SVR did the best job, getting an RMSE of 20.14 and handling noisy
features well. The device cut the difference in tap temperature by 17% and the average power
use by 282 kWh per heat over five months. The internal rate of return was 35.8% based on an
economic analysis. The TTPM's successful ten-month operation shows that it is reliable, which
improves production efficiency, saves energy, and helps steel manufacturing become carbon
neutral[20].
Shaheen 2023 et al. Creates a machine learning-based method to guess the mechanical
properties of high-strength steel (HSS) plates at high temperatures, such as ultimate tensile
strength, yield strength, 0.2% proof strength, and elastic modulus. Conventional approaches
employing design code reduction factors frequently neglect the impact of testing
methodologies, manufacturing techniques, and chemical composition, resulting in erroneous
forecasts. To solve this problem, a deep neural network model is trained with experimental data
from the literature, employing temperature and chemical composition as input variables. The
results show a strong association and a small prediction error, making it a useful tool for making
sure that HSS constructions are safe from fire and can handle high temperatures[21].
Radonji¢ 2022 et al. Modern predictive maintenance benefits from IoT solutions that simplify
data collection and analysis, while Al-driven algorithms combined with interconnected sensor
architectures create intelligent maintenance systems that surpass traditional approaches.
Propose an acoustic-based IoT system for detecting conditions in rotating machines. The device
is mobile, cost-effective, and employs a discrete wavelet transform with neural networks, tuned
using a genetic algorithm. Tested in real industrial environments with heavy acoustic
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interference, the system achieved strong results, reaching an average F1 score of 0.99 with
optimized hyper parameters, demonstrating its reliability, scalability, and practical
effectiveness in predictive maintenance[22].

Redchuk 2022 et al. Looks at how Canvass Analytics' platform is being used to implement a
machine learning (ML) solution in steel manufacturing. It also talks about how AI/ML may
improve traditional industrial processes. A bibliographic evaluation of the Scopus database set
up the conceptual framework and the most up-to-date information. This was followed by a case
study to see how a No-Code/Low-Code ML solution would affect the operations of a steel mill.
The results showed that AI/ML can be made available to process operators by showing that it
can be used faster and with better results than traditional analytics methods. The report stresses
the need for smart manufacturing, data, and new business models that might make it easier and
faster to use Al and ML in business[23].

Jamshidi 2021 et al. uses a mix of machine learning methods to guess how Oxide Precipitation
Hardened (OPH) alloys, a new type of Oxide Dispersion Strengthened material, would behave
mechanically. Traditional analytical modelling has a hard time with the alloys' many variables,
nonlinearities, and uncertainties. Al-based methods work better in these cases. We used three
methods to find the ultimate tensile strength (UTS) and elongation: feedforward neural
networks trained with particle swarm optimisation, and two adaptive neuro-fuzzy inference
systems that used fuzzy C-means and subtractive clustering. Using experimental tensile data
from mechanically alloyed and heat-treated OPH variants, the models achieved about 95%
accuracy, which made it possible to reliably predict properties based on composition and
processing parameters. This also generated it possible to make alloys with out requiring to do
any math.[24].

TABLE 1 LITERATURE SUMMARY

Authors/year Methodology Research gap Findings

Mey/2020 [25] Vibration-based Limited studies on | Fully connected
machine learning | robust, scalable | neural network
fault detection. predictive achieved highest

maintenance models | accuracy in vibration
for rotating | fault detection.
machinery.

Sheu/2020 [26] Deep learning-based | Existing automation | IDS-DLA achieved
sheet metal | lacks accuracy in | higher accuracy than
identification. sheet metal part | previous sheet metal

identification identification
systems. benchmarks.

Sepulveda/2020 [27] | Optimized vibration- | VML models lack | Optimized VML
based fault diagnosis | generalization across | model showed
model. machines and | robust, reliable fault
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varying  operating | detection across
conditions. conditions.

Huang/2020 [28] CNN-based steel | Conventional CNN-based method
wire rope detection. | methods rely on | outperformed

manual features, | traditional
limiting  detection | approaches in
accuracy. accuracy and speed.

Masani/2019 [29] CART-based Lack of automated | CART model
production machine | systems predicting | accurately predicted
accuracy prediction. | machine  accuracy | machine

with energy data. performance and
generated power
reports.

Fucun/2018 [30] CART-based Existing studies lack | Proposed system
approach improved | integration of | achieved  accurate
machine  accuracy | machine  accuracy | machine monitoring
prediction and | prediction with | with automated
automated power | automation. reporting.
reporting.

[31] CNN-based CWTS | Traditional vibration | CNN-CWTS method
fault diagnosis | methods miss crucial | accurately diagnoses
method. information; CNN- | faults across

CWTS improves | different rotating
accuracy. machinery.

Sarkar/2017 [32] Text mining-based | Limited research on | Maximum Entropy
accident prediction | text-driven accident | and Random Forest
model. prediction models in | achieved highest

steel industry. accuracy in
predictions.

Layouni/2017 [33] Wavelet-ANN based | Manual MFL | Proposed  method
defect detection. analysis is time- | accurately  detects

consuming and error- | defect length and
prone for operators. | predicts depth
efficiently.

Kande/2017 [34] Plant-wide rotating | High monitoring | Advancements in
machine monitoring | costs limit plant- | sensing and
methodolog wide implementation | automation can

of condition | enable broader
monitoring systems. | condition
monitoring.
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3. Research Methodology

This study utilizes a research methodology designed to provide a comprehensive predictive
maintenance framework through the application of machine learning (ML) alongside deep
learning (DL) techniques, leveraging the AI41 2020 Predictive Maintenance set from the UCI
Machine Learning Repository. The methodology delineates a structured pipeline that initiates
with raw data acquisition and progresses through preprocessing, exploratory data analysis
(EDA), model development, and performance assessment. The dataset includes a variety of
sensor readings that are relevant to machine conditions and operating parameters, making it
suitable for the failure prediction task. The first step is to do a lot of preprocessing because
industrial sensor data often has noise, values that are incorrect, and other problems. This means
finding and fixing missing data, getting rid of measurements that don't make sense (such
negative torque or axial speed), and creating attributes that are specific to the field, including
temperature differential or mechanical power. The new attributes improve the feature space and
capture important trends of machine health. All of the chosen qualities are standardized so that
the contributions of each variable are equal. Stratified sampling is then used to split the dataset
into training and testing subsets, keeping the same number of failure and non-failure
occurrences in each. Since machine failures don't happen very often in factories, the study uses
the Synthetic Minority Oversampling Technique (SMOTE) to fix class imbalance. SMOTE
makes fake examples of the minority class, which stops learning algorithms from selecting
cases where there is no failure. After preprocessing, an exploratory data analysis (EDA) step
provides statistical and visual insights into feature distributions, correlations, and patterns that
distinguish functioning equipment from failing equipment. This step helps choose a model and
points out any problems. Both machine learning models (Random Forest, XGBoost, SVM, and
Logistic Regression) and a deep learning ConvlD model are built and improved through
hyperparameter optimization. We carefully evaluate their performance using standards like
accuracy, precision, recall, F1-score, ROC-AUC, and log loss to make sure that the comparison
test is fair.

Machine Learning \1()(](‘|5—| SMOTE (Balancing) |ll)m~p Learning Models

II‘I\'»lluulion: A wy, Precision, Recall, l"—:«'orl‘I

courne: isio
C Encd >

Figure 1 Proposed Flowchart
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3.1 Dataset Description

This study utilizes the AI 41 2020 Predictive Repair Dataset available from the repository of
UCI Machine Learning. The dataset has sensor readings and information about how the
machine works, such as the temperature of the air and the process, the speed of rotation, the
torque, the wear on the tool, and the labels for machine failures. It provides a realistic industrial
environment for maintenance planning research, incorporating several variables to precisely
characterize machine deterioration and pinpoint operational phases.

3.2 Data Preprocessing

Preparing the data is a crucial step in building a good predictive maintenance model since it
makes sure that the data is accurate, consistent, and suitable for training deep learning and
machine learning algorithms. The process begins by looking at and dealing with missing values
in all of the variables. Lack of data can throw off statistical distributions and make models less
reliable, thus the dataset is carefully checked for any problems. Sensor accuracy is very
important for predictive maintenance. If there is missing data, it is either filled in with the right
methods or the affected records are deleted if the amount of missing data is little. The next step
is to get rid of readings that don't make sense since they go against the physical limits of how
machines work. Negative values for torque or rotational velocity are not possible and are seen
as errors in the data. Removing these kinds of errors improves the quality of the dataset and
stops false patterns from forming during model training. After that, feature engineering is done
to add more useful attributes to the dataset. Two important factors are identified: Temp
Difference (Temp_diff), which shows the difference between the temperature of the process
and the temperature of the environment, and Mechanical Power (Power), which is calculated
using torque and rotational velocity. These designed features give us better information on the
health of machines and the stress they are under while they are running, making the dataset
more like what we would find in the real world. After that, relevant features are selected based
on their predictive importance and the knowledge of the field. The input features are things like
air temperature, process temperature, rotational speed, torque, tool wear, temperature
difference, and power. The objective variable is machine failure. Z-score normalization is used
to standardize all the chosen features so that they may be compared across different scales. This
sets the mean to zero and the variance to one. Stratified sampling divides the dataset into two
groups: training and testing, with 80% of the data going to training and 20% going to testing.
This makes sure that the number of failures and non-failures stays the same, which makes it
easier to evaluate the model fairly.

3.3 Handling Class Imbalance (SMOTE)

The dataset shows that there are too many classes because machines don't break down very
often. This could cause models to make predictions that are too optimistic. To fix this problem,
the training set uses the Synthetic Minority Oversampling Technique (SMOTE). SMOTE
generates artificial specimens of the minority failed class by the interpolation of the current
examples, thus balancing class distributions. This ensures fair learning and improves the
accuracy of models in predicting rare failures.
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3.4 Exploratory Data Analysis (EDA)
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Figure 2 Correlation Heatmap
The heatmap shows strong correlation between air and process temperatures, negative torque-
speed relation, highlighting influential parameters for machine failures.
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Figure 3 Failure Type Counts
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Failure count plot reveals imbalance: HDF and OSF dominate, RNF rare, emphasizing
importance of balancing strategies like SMOTE for fairness.

Machine Failure Distribution

10000 A

8000

6000

count

4000 -

2000 ~

Machine failure

Figure 4 Machine Failure Distribution (20 words)
The distribution shows extreme imbalance, with most machines healthy and very few failures,
stressing importance of SMOTE for balanced learning.
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Figure 5 Failure by Product Type
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Failures vary across product categories, with product L showing most failures, highlighting
operational vulnerabilities and need for targeted maintenance strategies.
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Figure 6 Line charts of sensor variables (air temperature, process temperature,
rotational speed, torque, and tool wear)
Sensor trends show cyclical temperature variations, fluctuating torque and speed, and
progressive tool wear, reflecting real industrial operating conditions.
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3.5 Model Development
3.5.1 Machine Learning Models
The research utilizes four machine learning models—Random Forest, XGBoost, Support
Vector Machine, and Logistic Regression—to forecast machine failures. Every model is refined
by GridSearchCV and assessed using balanced metrics. These models offer interpretability,
robustness, and performance metrics for evaluating the efficacy of predictive maintenance in
industrial settings.

e Random Forest Classifier
The Random Forest Classifier is an ensemble learning technique that builds numerous decision
trees during training and consolidates their predictions to improve generalization. In this study,
the fundamental model was set up with class weight='balanced' to fix the class imbalance and
make sure that the estimates for the minority class were not missed. GridSearchCV was used
to optimize hyperparameters by testing things like the total amount of trees (n_estimators), the
maximum depth (max depth), the lowest number of samples needed to split
(min_samples_split), and the minimum dimension of the leaf (min samples leaf). This
systematic optimization helped the model balance bias and variance, which resulted to very
accurate predictions and less overfitting.

e  XGBoost Classifier
XGBoost, which stands for extreme gradient booster, is a boosting technique that creates trees
one at a time, fixing mistakes made in earlier iterations. Because it can handle noisy and
unbalanced datasets well, it is now commonly used for predictive maintenance jobs. This study
initialized the model with eval metric="logloss' and disabled label encoding to maintain
interpretability. We used GridSearchCV with 3-fold cross-validation to look at a
hyperparameter grid that included tree depth, acquisition rate, number of estimators, and
subsampling ratio. This made sure that the best model was chosen, one that could find non-
linear connections in the data set while also avoiding overfitting.

e Support Vector Machine (SVM)
Help The Vector Machine is a strong supervised learning method that works especially well in
areas with many dimensions. This study constructed a Support Vector Machine (SVM) with
probability estimates activated (probability=True), facilitating ROC-AUC evaluation in
conjunction with conventional classification measures. We systematically tuned
hyperparameters such the kind of kernel (linear or RBF), the regularization factor C, and the
kernel coefficient gamma. GridSearchCV made it easier to find the best configuration by
making sure that the decision boundary had the biggest gap between classes. SVM showed a
lot of promise for separating complicated feature interactions, even though it was
computationally expensive. However, its sensitivity to category imbalance meant that it needed
to be carefully tested.

e Logistic Regression
Logistic Regression was used as an initial model since it is easy to understand and works
quickly. The technique uses the logistic function to model the chance of being in a certain class,
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which makes it good for binary classification jobs like predicting failure. To get better results,
the Ibfgs solver was used with max_iter=1000 to make sure it converged, and hyperparameters
like regularization strength C along with penalty type (12) were adjusted. Logistic Regression
was less flexible versus tree-based models, but it gave useful benchmark insights and made it
easier to identify how features contributed to machine failure classification.
3.5.2 Deep Learning Model
To find sequential dependencies in data collected from sensors for predictive maintenance, a
one-dimensional CNN (Conv1D) is used. The model effectively captures complex patterns
through the incorporation of convolutional layers, normalization in batches, dropout, and max
pooling. It uses Adam optimization with binary cross-entropy to generalize better than regular
machine learning models.

e ConvlD Model Architecture
The deep learning method used a one-dimension Convolutional Neural Network (Conv1D)
since it was good at handling sequential sensor data. There were two convolutional blocks in
the architecture. The first block had 64 filters with a kernel size of 3. It was followed by ReLU
initiation, batch normalization, max pooling, as well as a dropout rate of 0.3. The second block
included 128 filters instead of 64, and it used the same steps as the first block, which made it
easier to get more advanced depictions of features. The last layers were a fully linked dense
layer with 64 neurons and an irregular output layer for binary classification.
Input Preparation for Sequential Data
We changed the features into 3-dimensional arrays with the structure (samples, features, 1) so
that the dataset could be used with Conv1D. This model let the convolutional layers find
temporal relationships between sensor readings by considering every feature as a sequential
channel.
Hyperparameter Tuning
The ConvlD model was trained using the Adam optimizer, linear cross-entropy loss, and
metrics like accuracy, precision, and recall. We carefully picked the hyperparameters: the
learning rate (0.001), the batch size (32), the number of epochs (100), and the validation split
(10%). To improve training speed and generalization, we looked at rates of dropout and filter
sizes.
Regularization and Optimization
Regularization was implemented using dropout layers across the architecture, mitigating
overfitting by randomly disabling neurons during training. Batch normalization enhanced
stability and expedited convergence by the normalization of activations. The integration of
Adam optimization, dropout, and max pooling facilitated effective feature extraction and strong
generalization, rendering Conv1D a formidable alternative to conventional machine learning
models in predictive maintenance applications.
Table 2 Hyper parameter details

Hyperparameter Value

Optimizer Adam
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Learning Rate
Loss Function
Metrics

Epochs

Batch Size
Validation Split
Convl1D Filters
Kernel Size

Activation Function

0.001

Binary Cross-Entropy

Accuracy, Precision, Recall

100

32

0.1 (10%)

64 (1st layer), 128 (2nd layer)

3

ReLU (hidden), Sigmoid (output)

MaxPooling1D Pool Size 2
Dropout Rate 0.3
Batch Normalization Yes
Key Equations
1. Convolution Operation (1D):
Y@) = XIS x(E + i) - w(@) + b (D
Where:

e X = input sequence (sensor values),

o w = filter weights,

o k =kernel size (here 3),

e b =bias term,

o y(t) = feature output at time ttt.

2. ReLU Activation (hidden layers):
f(x) = max(0, x) )
This keeps positive values and removes negatives, making the network efficient at learning
nonlinear patterns.

3. Sigmoid Activation (output layer for binary classification):

1
1+e~% (3)
Converts output into probability between 0 and 1 (failure vs. non-failure).
4. Results and Discussion

The experimental results demonstrate the effectiveness of both machine learning (ML)

o(z) =

alongside deep learning (DL) techniques in predicting machine failures using the AI41 2020
dataset. Tree-based models, such as Random Forest and XGBoost, consistently outperformed
linear models, achieving superior accuracy and ROC-AUC metrics. The use of SMOTE
significantly improved recall in several models by making the class distributions more even,
albeit it sometimes hurt precision. The ConvlD deep learning system was able to find
sequential patterns quite well, and it did just as well as machine learning methods. The
invention involves integrating features with SMOTE-based balancing and assessing machine
learning in comparison to deep machine learning for automated maintenance tasks.
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4.1 Evaluation Metrics (Accuracy, Precision, Recall, F1-Score, ROC-AUC, Log Loss)
Evaluation metrics are very important for figuring out how strong a model is. Accuracy is a
general measure of performance, but it may favor the majority classes. Precision shows how
well you can find positive scenarios, which is important for lowering the number of false
positives. Recall shows how sensitive you are to finding real situations. The F1-Score balances
Precision and Recall to give a complete picture. ROC-AUC tests how well anything can tell
the difference between two things at different levels, which makes classification more fair. Log
Loss takes into account the probability of predictions and punishes mistakes that are too
confident, which shows that the model is calibrated. Using these several criteria makes sure
that the assessment is thorough and makes it easier to find trade-offs between models. The idea
is combining different complementary measures to find subtle changes in performance.

TP+TN
Accuracy = o rrirn @
1om oo ,
Loss = —%Zizlyl.log(’yl) (5)

Precision = —— (6)

TP+FP
Recall = —= (7)

TP+FN

4.2 Performance of Machine Learning Models (Without SMOTE)

Preliminary research with machine learning models, conducted without the application of
SMOTE, demonstrated the significant impact of class imbalance. Models like Random Forest
and XGBoost attained comparatively higher accuracy but encountered difficulties with Recall,
inadequately representing minority classes. Logistic Regression and SVM demonstrated a
tendency towards majority class predictions, resulting in diminished F1-scores. ROC-AUC
values demonstrated restricted discriminatory power for unbalanced data. This baseline
investigation demonstrated how imbalance distorts prediction confidence and affects model
fairness. The innovation resides in establishing a comprehensive baseline for evaluating
advanced balancing schemes. Table encapsulates the findings, strongly highlighting the
shortcomings of models devoid of balancing techniques.

Table 4.1 ML Models Performance without SMOTE

Model Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss
Random Forest 0.9840 0.7969 0.7286 | 0.7612 | 0.9808 0.0617
XGBoost 0.9835 0.9111 0.5857 | 0.7130 | 0.9870 0.0527
SVM 0.9650 0.0000 0.0000 | 0.0000 | 0.9542 0.0767
Logistic Regression | 0.9695 0.7368 0.2000 | 0.3146 | 0.9493 0.0835

Random Forest and XGBoost achieved excellent accuracy and ROC-AUC, but recall was
modest, showing limited ability to detect minority class failures. SVM failed to capture failure
cases, while Logistic Regression provided interpretable yet weaker performance.
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4.3 Performance of Machine Learning Models (With SMOTE)

When SMOTE was applied, machine learning models exhibited significant improvements in
Recall, F1-Score, and ROC-AUC. Logistic Regression and SVM achieved enhanced sensitivity
by effectively recognizing minority class instances. Ensemble models like Random Forest and
XGBoost balanced Precision and Recall, yielding better overall stability. Although accuracy
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remained comparable, Log Loss values improved, reflecting better probability calibration. This
performance uplift highlights the value of synthetic minority balancing in reducing
classification bias. The novelty of this analysis lies in quantifying how SMOTE transforms
model fairness and reliability, demonstrating that balancing strategies can significantly
enhance performance. Table 2 outlines these improved outcomes.

Table 4.2 ML Models Performance with SMOTE

Model Accuracy | Precision | Recall | F1 ROC Log
Score AUC Loss

Random Forest 0.9815 0.6941 0.8429 | 0.7613 | 0.9830 0.0732

XGBoost 0.9810 0.6905 0.8286 | 0.7532 | 0.9827 0.0580

Logistic 0.8530 0.1818 0.9143 | 0.3033 | 0.9552 0.3525

Regression

SVM 0.9530 0.4178 0.8714 | 0.5648 | 0.9716 0.1381

Here, Random Forest and XGBoost maintained high ROC-AUC while significantly boosting
recall, reflecting balanced predictive strength. Logistic Regression gained recall but suffered
in precision, while SVM demonstrated improved sensitivity but at reduced accuracy.
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5.3 Performance of Deep Learning Model (With vs. Without SMOTE)
Deep learning models were evaluated under both imbalanced and balanced conditions. Without
SMOTE, the model demonstrated high accuracy but exhibited poor Recall, misclassifying a
significant portion of minority samples. With SMOTE, the model achieved balanced Precision,
Recall, and F1-score, accompanied by a notable increase in ROC-AUC. This indicates deep
learning’s adaptability to balanced datasets, enabling improved representation of minority
classes. Unlike traditional ML models, deep networks leveraged feature abstraction more
effectively after SMOTE. The novelty lies in demonstrating that balancing not only enhances
performance but also optimizes feature representation in deep models. Table 3 presents
comparative metrics.
Table 4.3 ConvlD Deep Learning Model Performance

Scenario Loss Accuracy | Precision | Recall | F1 Score
Without SMOTE | 0.0604 | 0.9820 0.7931 0.6571 | 0.7188
With SMOTE 0.1404 | 0.9480 0.3938 0.9000 | 0.5478

The ConvlD model performed strongly without SMOTE, achieving balanced accuracy and
precision. With SMOTE, recall surged to 0.90, demonstrating its sensitivity to detecting
failures, though precision decreased. This highlights a trade-off between false positives and
robust failure detection:
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4.4 Comparative Analysis of ML and DL Models
Tree-based models (Random Forest, XGBoost) consistently outperformed linear models and
offered strong benchmarks. The ConvlD deep learning model provided competitive results,
particularly in capturing sequential patterns that ML models could not fully exploit. While
SMOTE improved recall across both ML and DL, its effect was more pronounced in deep
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learning. This comparative analysis shows that hybrid approaches leveraging both engineered
features and deep sequential learning could provide optimal performance in predictive
maintenance tasks. The comparative study between ML and DL models revealed distinct
performance patterns. Machine learning models benefited substantially from SMOTE in
achieving balanced results, especially with ensemble methods like Random Forest and
XGBoost. Deep learning models had trouble at first when there was an imbalance, but they did
much better after the balance was restored, especially in Recall and ROC-AUC. Interestingly,
DL models showed better generalization when the representation of classes was equalized. This
comprehensive assessment across paradigms reveals the transformative impact of SMOTE on
both ML and DL effectiveness. Table 4 evaluates performance and shows how balancing affects
results. It also shows how deep learning is better at recognizing complicated patterns.

4.5 Discussion of Findings

The results of this study show how important preprocessing, feature engineering, and weight
balancing techniques are for making models more accurate and robust. The findings
demonstrated that machine processing and deep learning models respond differently to
alterations in features and oversampling methods. Classical machine learning methods
exhibited substantial gains by methodical feature engineering while balancing, whereas deep
learning displayed greater adaptability in controlling imbalanced data, particularly with
intricate, dynamic interactions. This indicates that the integration of tailored preprocessing with
advanced modeling can produce optimal results in real-world scenarios. Feature engineering
had a big effect on how well all the models worked. Changing raw variables into important
statistical characteristics and frequency-based features made classifiers better at telling the
difference between things. Machine learning models like Random Forest and XGBoost
witnessed big improvements in performance because of features that captured behavioral
patterns. However, deep learning methods naturally benefited from these better representations
to get more abstract. This shows that planned features not only cut down on noise, but also
make data distributions more consistent so that learning is more effective. The new idea is to
make context-aware features that improve the ability to predict what will happen in network
flow circumstances. SMOTE was important for fixing class imbalance, which often makes
models favor the majority classes. The results showed that using SMOTE significantly
improved both machine learning and deep learning models' recall and F1-score. In machine
learning, oversampling improved algorithms' capacity to apply to samples from minority
groups, while deep learning models benefited from better gradient stability. The innovation
consists in the comparative evaluation of imbalance management between machine learning
and deep learning, illustrating how synthetic data generation improves robustness. Each model
had its own pros and cons. Machine learning models were easy to understand, trained quickly,
and always worked well with the features that were built into them. However, they had trouble
scaling up. Deep learning models achieved enhanced generalization and adaptability, albeit
requiring augmented computing resources. The originality is in the comparative framework
that delineates trade-offs between interpretability and predictive efficacy, guiding model
selection for practical applications.
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5. Conclusion and Future Work

This project developed a predictive service framework using the AI4l 2020 dataset to

accurately anticipate machine failures and reduce unexpected downtime. The methodology

included important preprocessing steps like data cleaning, feature engineering, plus SMOTE-
based balancing, followed by the use of both machine development and deep learning models.

The models that were shown to work well at finding prospective machine issues before they

happened were tested using precision, recall, accuracy, and Fl-score. By changing from

reactive or scheduled upkeep to predictive maintenance, this makes industrial systems far more
reliable, increases their efficiency, and lowers their maintenance costs. The results demonstrate
that machine learning models like a Random Forest or Gradient Boosting gave clear
explanations of the importance of features, whereas deep learning models showed strong
generalization when dealing with complicated feature interactions. The integrated framework
underscores the importance of hybrid approaches, wherein traditional machine learning and
advanced methods for deep learning can mutually benefit each other in predicting repair tasks.
Despite these positive outcomes, numerous limitations remain. The dataset used is well-
organized and clean, which means it might not fully capture the complexities of real-world
industrial situations, such as sensor signals that are too loud, missing values, or data sources
that are different from one another. Additionally, the research focused solely on static
characteristics, neglecting real-time streaming data and temporal sequence modeling. Future
initiatives may address these challenges by leveraging real-time IoT sensor data, including edge
computing, and utilizing advanced sequence models such as LSTM, GRU, or Transformers to
elucidate temporal relationships in machine behavior. Also, explainable Al (XAI) methods can
make models easier to understand and help build trust among those who work in industry.

Adding cross-domain predictive maintenance to the platform and testing it in real industrial

settings would make it more useful and scalable.
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