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Abstract— In digital systems, the analog signals will 

change into digital sequence (in the form of bits). This 

sequence of bits is called as “Data stream”. The change in 

position of single bit also leads to catastrophic (major) 

error in data output. Almost in all electronic devices, we 

find errors and we use error detection and correction 

techniques to get the exact or approximate output. Error 

detection and correction codes based on redundant residue 

number systems are powerful tools to control and correct 

arithmetic processing and data transmission errors. 

Decoding the magnitude and location of a multiple error is 

a complex computational problem: it requires verifying a 

huge number of different possible combinations of 

erroneous residual digit positions in the error localization 

stage. 
 

Index Terms— Error Detection, Error Correction, Binary 

Arithmetic Codes 
 

I. INTRODUCTION 

Traditionally, channel coding is performed after source coding 

to protect the compressed bit stream sent over a noisy channel. 

For example, an image file is first compressed by using 

Discrete Cosine Transformation or arithmetic coding [1] with 

high coding efficiency. Then, the compressed sequence is 

further protected by Turbo code [2] or Hamming code [3] 

against channel noise. This traditional separate scheme lacks 

the cooperation between source and channel coding processes 

and may not result in the optimal performance. Recent studies 

have revealed that the joint operation of them leads to some 

advantages when compared with the traditional separately 

operated approach [4]. As certain implicit redundancy still 

exists in the bit streams when the encoder cannot ideally 

decorrelate the source symbols, it can be utilized in the joint 

scheme to improve the overall error correcting performance. 

Thus, it is possible for the joint scheme to outperform the 

separate approach [5]. 

Early works on joint source-channel coding were devoted to 

the study of error resilience in variable length codes (VLC). In 

particular, most of which were focused on the 

resynchronization ability of Huffman code [6]. The 

corresponding hard and soft decoding schemes based on 

maximum likelihood (ML) or MAP metrics are well-studied 

for a binary symmetric channel (BSC) with additive white 

Gaussian noise (AWGN). As arithmetic coding (AC) 

represents a source symbol using a fractional number of bits, it 

leads to a better compression efficiency and achieves the 

optimal entropy coding. However, the high compression ratio 

makes the codeword more sensitive to channel noise and is 

difficult to be resynchronized. Therefore, there is a growing 

interest in improving the robustness of AC against channel 

noise. 

In [7], a forbidden symbol introduced by a reduction in the 

coding interval is adopted to detect the transmission error 

continuously. These errors can be detected when the forbidden 

region is visited. This continuous nature in error detection is 

exploited to improve the overall performance of the 

communication system [8]. It provides a tradeoff between the 

extra redundancy and the delay in detecting an error since its 

occurrence. Instead of the forbidden symbol, the insertion of 

markers in some particular positions of the input sequence 

plays the role of synchronization between the encoder and the 

decoder [9].  

The markers which do not appear in the expected positions 

indicate transmission errors. Three strategies for the selection 

of the markers were studied in [10]. A better compression ratio 

can be achieved using an adaptive or an artificial marker 

scheme. The adaptive marker scheme selects the most frequent 

source symbol as the marker symbol while the artificial 

marker scheme creates an artificial marker with an arbitrary 

probability. Making use of the error detection capacity of AC, 

error correction is performed by sequential decoding, which 

successively removes the erroneous decoding paths. In [11], 

depth-first and breadth-first decoding algorithms were 

proposed with binary branching based on a null zone. The 

decoding paths are discarded due to the error detection 

capacity of the forbidden symbol. All the decoding paths with 

the lowest Hamming distance from the received sequence are 

preserved in a list. 

In [12], a MAP criterion based on the context-based AC was 

proposed with the insertion of synchronization markers, where 

the symbol clock and the bit clock models were analyzed. The 

iterative decoding of error resilient AC concatenated with a 

convolutional code is adopted and its error correcting 

capability is validated with the transmission of images over an 

AWGN channel. A novel MAP decoding approach based on 

the forbidden symbol was proposed in [10], with a high 
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flexibility in adjusting the coding rate. Sequential decoding 

algorithms, such as stack algorithm and -algorithm, are 

adopted and the proposed system outperforms the separate 

approach based on convolutional codes in terms of error 

correcting capability. It is serially concatenated with channel 

codes and iterative decoding is employed to further improve 

the overall performance. 

Thus, chaos control techniques can be adopted to further 

enhance the error correction performance. A sequential MAP 

estimation for CABAC coder was proposed in [13], which 

employs an improved sequential decoding technique to 

determine the tradeoff between complexity and efficiency. In 

[14], a look-ahead technique for AC decoder was proposed to 

allow quick error detection. Considering the improvement in 

the implementation efficiency, AC can be modeled as a finite-

state machine corresponding to a variable-length trellis code. 

The trellis code based on AC was proposed in [2], where a list 

Viterbi decoding algorithm is applied on the corresponding 

trellis code and a cyclic redundancy check code is employed 

for detecting small Hamming-distance errors. The free 

distance of the corresponding AC-based VLC and its 

theoretical error correction performance were investigated in 

[29, 30]. Besides that, the practical implementations on this 

joint source-channel coding scheme were studied in [3] for 

high coding speed. 

The error detecting capability of AC was analyzed in our 

previous paper [15]. Here we extend our previous work to 

tackle the problem of error correction in AC. An effective 

error correction technique utilizing the forbidden symbol is 

proposed, which predicts the occurrence of the subsequent 

forbidden symbols. With our approach, the forbidden region is 

theoretically expanded and so a better error correction 

performance is achieved. Furthermore, a generalized stack 

algorithm (SA) extending  branches from the best node is also 

studied for the detection of the forbidden symbol beforehand. 

The MAP metric [10] is integrated with our approach to 

preserve the most probable decoding paths in the stack. The 

idea of our approach was briefly presented in [3], which 

mainly focuses on the forecasting of the forbidden symbols. 

Here, the procedures of AC with forecasted forbidden symbols 

are described in detail. More analyses and simulation results 

are provided to justify that the proposed scheme outperforms 

the look-ahead scheme [6] and the original MAP scheme [10] 

on the error correction performance, especially at a low coding 

rate. 

 

II. LITERATURE REVIEW 

In [1], Kristjane Koleci et al., depicts a productive execution 

of the iterative decoder that is the primary piece of the 

unscrambling stage in the LEDAcrypt cryptosystem, as of late 

proposed for post-quantum cryptography in light of low-

thickness equality check (LDPC) codes. The execution we 

present endeavors the construction of the factors to speed up 

the disentangling system while keeping the region limited. 

Specifically, our attention is on the plan of an effective 

multiplier, the last option being a basic part likewise taking 

into account considering various upsides of the cryptosystem's 

boundaries, as it very well may be needed in later applications. 

We expect to give an engineering reasonable to minimal 

expense execution on both Field Programmable Gate Array 

(FPGA) and Application Specific Integrated Circuit (ASIC) 

executions. Concerning the FPGA, the complete execution 

time is 0.6 ms on the Artix-7 200 stage, utilizing all things 

considered 30% of the all out accessible memory, 15% of the 

absolute accessible Look-up Tables and 3% of the Flip-Flops. 

The ASIC blend has been performed for both STM FDSOI 28 

nm and UMC CMOS 65 nm advancements. After rationale 

blend with the STM FDSOI 28 nm, the proposed decoder 

accomplishes a complete inactivity of 0.15 ms and a region 

control of 0.09 mm 2 . The post-Place&Route execution 

results for the UMC 65 nm show a complete execution season 

of 0.3 ms, with an area control of 0.42 mm 2 and a power 

utilization of at most 10.5 mW. 

 

In [2], P. Santini et al. [2], iterative decoders utilized for 

unraveling low-thickness equality check (LDPC) and 

moderate-thickness equality check (MDPC) codes are not 

portrayed by a deterministic deciphering range and their 

blunder rate execution is generally surveyed through escalated 

Monte Carlo recreations. In any case, a few applications, 

similar to code-based cryptography, need ensured low upsides 

of the blunder rate, which are infeasible to evaluate through 

recreations, accordingly requiring the advancement of 

hypothetical models for the mistake pace of these codes. A 

few models of this sort as of now exist, however become 

computationally unmanageable for boundaries of 

commonsense interest. Different methodologies inexact the 

code gathering conduct through presumptions, which may not 

remain constant for a particular code. We propose a 

hypothetical examination of the blunder amendment ability of 

LDPC and MDPC codes that permits inferring tight limits on 

the mistake rate at the result of equal piece flipping decoders. 

Unique consideration is given to the situation of codes with 

little bigness. Single-cycle disentangling is researched through 

a thorough methodology, which doesn't need any presumption 

and results in a dependable blunder remedy capacity for any 

single code. We show an illustration of use of the new bound 

to the setting of code-based cryptography, where ensured 

mistake rates are expected to accomplish solid security levels. 

 

In [3], J. Hu et al. [3], present a lightweight equipment plan 

for an as of late proposed quantum-safe key embodiment 

system in view of QC-LDPC codes called LEDAkem, which 

has been conceded as a cycle 2 contender to the NIST post-

quantum normalization project. Existing executions center 

around fast while not many of them consider region or power 

productivity, which are especially unequivocal for minimal 

expense or power compelled IoT applications. The 

arrangement we propose targets augmenting the measurement 

of region proficiency by pivoting the QC-LDPC code 

portrayals among the square RAMs in digit level. In addition, 

upgraded parallelized processing strategies, languid gathering 

and square parcel are taken advantage of to work on key 

decapsulation as far as region and timing effectiveness. We 

show for example that our region streamlined execution for 

128-digit security requires 6.82 x 105 cycles and 2.26 x 106 

cycles to epitomize and decapsulate a common mystery, 
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individually. The region improved plan utilizes just 39 cuts (3 

percent of the accessible rationale) and 809 cuts (39 percent of 

the accessible rationale) for key epitome and key 

decapsulation individually, on a little size low-end Xilinx 

Spartan-6 FPGA. 

 

In [4], D. Zoni et al. [4], considering code-based 

cryptography, semi cyclic low-thickness equality check (QC-

LDPC) codes are predicted as one of a handful of the answers 

for configuration post-quantum cryptosystems. The digit 

flipping calculation is at the center of the unraveling system of 

such codes when used to plan cryptosystems. A compelling 

plan should represent the computational intricacy of the 

deciphering and the code size needed to guarantee the security 

edge against assaults drove by quantum PCs. To this end, it is 

of foremost significance to convey productive and adaptable 

equipment executions to help quantum-safe public-key 

cryptosystems, since accessible programming arrangements 

can't adapt to the necessary exhibition. This original copy 

proposes a productive and adaptable engineering for the 

execution of the piece flipping methodology focusing on huge 

QC-LDPC codes for post-quantum cryptography. To exhibit 

the adequacy of our answer, we utilized the nine designs of the 

LEDAcrypt cryptosystem as delegate use cases for QC-LDPC 

codes appropriate for post-quantum cryptography. For every 

arrangement, our format engineering can convey an exhibition 

enhanced decoder execution for all the FPGAs of the Xilinx 

Artix-7 mid-range family. The test results exhibit that our 

upgraded design permits the execution of enormous QC-

LDPC codes even on the littlest FPGA of the Xilinx Artix-7 

family. Considering the execution of our decoder on the Xilinx 

Artix-7 200 FPGA, the test results show a normal exhibition 

speedup of multiple times across all the LEDAcrypt setups, 

contrasted with the authority enhanced programming 

execution of the decoder that utilizes the Intel AVX2 

augmentation. 

 

In [5], K. Koleci et al., this paper is based on cyclic 

redundancy check based encoding scheme. High throughput 

and high speed hardware for Golay code encoder and decoder 

could be useful in digital communication system. In this paper, 

a new algorithm has been proposed for CRC based encoding 

scheme, which devoid of any linear feedback shift registers 

(LFSR). In addition, efficient architectures have been 

proposed for both Golay encoder and decoder, which 

outperform the existing architectures in terms of speed and 

throughput. The proposed architecture implemented in virtex-

4 Xilinx power estimator. Although the CRC encoder and 

decoder is intuitive and easy to implement, and to reduce the 

huge hardware complexity required. The proposed method it 

improve the transmission system performance level. In this 

architecture our work is to design a Golay code based on 

encoder and decoder architecture using CRC generation 

technique. This technique is used to reduce the circuit 

complexity for data transmission and reception process. 

 

In [6], D. Zoni et al., Memories that operate in harsh 

environments, like for example space, suffer a significant 

number of errors. The error correction codes (ECCs) are 

routinely used to ensure that those errors do not cause data 

corruption. However, ECCs introduces overheads both in 

terms of memory bits and decoding time that limit speed. In 

particular, this is an issue for applications that require strong 

error correction capabilities. A number of recent works have 

proposed advanced ECCs, such as orthogonal Latin squares or 

difference set codes that can be decoded with relatively low 

delay. The price paid for the low decoding time is that in most 

cases, the codes are not optimal in terms of memory overhead 

and require more parity check bits. On the other hand, codes 

like the (24,12) Golay code that minimize the number of parity 

check bits have a more complex decoding. A compromise 

solution has been recently explored for Bose–Chaudhuri–

Hocquenghem codes.  

 

In [7], M. Baldi et al., this brief lays out cyclic redundancy 

check-based encoding scheme and presents an efficient 

implementation of the encoding algorithm in field 

programmable gate array (FPGA) prototype for both the 

binary Golay code (G23) and extended binary Golay code 

(G24). High speed with low-latency architecture has been 

designed and implemented in Virtex-4 FPGA for Golay 

encoder without incorporating linear feedback shift register. 

This brief also presents an optimized and low-complexity 

decoding architecture for extended binary Golay code (24, 12, 

8) based on an incomplete maximum likelihood decoding 

scheme. The proposed architecture for decoder occupies less 

area and has lower latency than some of the recent work 

published in this area. The encoder module runs at 238.575 

MHz, while the proposed architecture for decoder has an 

operating clock frequency of 195.028 MHz. The proposed 

hardware modules may be a good candidate for forward error 

correction in communication link, which demands a high-

speed system. 

 

In [8], Shivani Tambatkar et al., authors focus on Universal 

asynchronous receiver transmitter (UART) with BIST 

capability using different LFSR techniques and compared 

these techniques for the logic utilization in SPARTAN3 

XC3S200-4FT256 FPGA devices. Work concluded by the 

comparison of LFSR techniques on the basis of hardware. 

Number of configurable logic blocks used after the 

implementation of the BIST techniques is increased from74 to 

103 slices of the total slices. Area overhead results an increase 

in delay from 44.7 ns to 74.24 ns. The area overhead is 

somehow reasonable considering test performance obtained 

from these methods & gives the choice of the different LFSR 

methods with minimum area overhead or delay. 

 

III. BINARY CODES 

Block codes are referred to as (n, k) codes. A block of k 

information bits are coded to become a block of n bits. n=k + 

r, where r is the number of parity bits and k is the number of 

information bits. 

The more commonly employed Block codes are: 

1. Single Parity-Check Bit Code 

2. Repeated Codes 
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3. Hadamard Code 

4. Hamming Code 

5. Convolution Code Codes 

6. Cyclic Codes 

7. Golay Code 

8. Extended Golay Codes 

Marcel Golay was born in Neuchatel, Switzerland in 1902. He 

was a successful mathematician and information theorist who 

was better known for his contribution to real world 

applications of mathematics than any theoretical work he may 

have done [9, 10]. Golay’s sought the perfect code. Perfect 

codes are considered the best codes and are of much interest to 

mathematicians. They play an important role in coding theory 

for theoretical and practical reasons. The following is a 

definition of a perfect code:  

A code C consisting of N codewords of length N containing 

letters from an alphabet of length q, where the minimum 

distance d=2e+1 is said to be perfect if: 
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There are two closely related binary Golay codes. The 

extended binary Golay code G24 encodes 12 bits of data in a 

24-bit word in such a way that any 3-bit errors can be 

corrected or any 7-bit errors can be detected. The other, the 

perfect binary Golay code G23 has codewords of length 23 

and is obtained from the extended binary Golay code by 

deleting one co-ordinate position. In standard code notation 

the codes have parameters [24, 12, 8] and [23, 12, 7] 

corresponding to the length of the codewords, the dimension 

of the code and the minimum Hamming distance between two 

codewords respectively. In mathematical terms, the extended 

binary Golay code, G24 consists of a 12-dimensional subspace 

W of the space V=F224 of 24-bit words such that any two 

distinct elements of W differ in at least eight coordinates. By 

linearity, the distance statement is equivalent to any non-zero 

element of W having at least eight non-zero coordinates. The 

possible sets of non-zero coordinates as w ranges over W are 

called code words. In the extended binary Golay code, all code 

words have the Hamming weights of 0, 8, 12, 16, or 24. Up to 

relabeling coordinates, W is unique. The perfect binary Golay 

code, G23 is a perfect code. That is the spheres of radius three 

around code words form a partition of the vector space. 

 

Codeword Structure: A codeword is formed by taking 12 

information bits and appending 11 check bits which are 

derived from a modulo-2 division, as with the CRC. Golay 

[23, 12] Codeword. The common notation for this structure is 

Golay [23, 12], indicating that the code has 23 total bits, 12 

information bits, and 23- 12=11 check bits. Since each 

codeword is 23 bits long, there are 223, or 8,388,608 possible 

binary values. However, since each of the 12-bit information 

fields has only one corresponding set of 11 check bits, there 

are only 212, or 4096, valid Golay code words.        

 

 

 
Figure 1: Block Diagram of Golay Code 

 
The binary Golay code leads us to the extended Golay code. 

Codes can be easily extended by adding an overall parity 

check to the end of each code word. 

This extended Golay Code can be generated by the 12 × 24 

matrix G = [I12 | A], where I12 is the 12 × 12 identity matrix 

and A is the 12 × 12 matrix 
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The binary linear code with generator matrix G is called the 

extended binary Golay code and will be denoted by G24. 

The extended Golay code has a minimum distance of 8. 

Unlike the (23, 12) code, the extended Golay code is not 

perfect, but simply quasi perfect. 

Properties of the extended binary Golay code 

o The length of G24 is 24 and its dimension is 12.  

o A parity-check matrix for G24 is the 12 × 24 matrix H 

= [A | I12]. 

o The code G24 is self-dual, i.e., G⊥ 24 = G24. 

o Another parity-check matrix for G24 is the 12 × 24 

matrix H0 = [I12 | A] (= G). 

o Another generator matrix for G24 is the 12 × 24 matrix 

G0 = [A | I12] (= H). 

o The weight of every codeword in G24 is a multiple of 

4. 

o The code G24 has no codeword of weight 4, so the 

minimum distance of G24 is d = 8. 

o The code G24 is an exactly three-error-correcting code. 
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Table 1: Comparison Result of Different Types of Binary 

Code 
Binary 
Code 

Error 
Detection 

Error 
Correction 

Efficiency Distance 

Single 

Parity-
Check Bit 

Code 

1 1 80-85% low 

Hadamard 

Code 

2 1 50% Low 

Hamming 

Code 

2 1 85-90% low 

Convolution 

Code 

2 2 85-90% Medium 

Cyclic 

Codes 

3 2 75-80% Medium 

Golay 

Codes 

7 3 70-75% Large 

Extended 

Golay 

Codes 

8 3 80-85% Very 

Large 

 

IV. CONCLUSION AND FUTURE SCOPE 

In this paper, the error detection and correction code and 

operation for various encoder and decoder is discussed. This 

encoding and decoding algorithm have been successfully 

applied to short block codes such as error detection and 

correction code. Decoding algorithm consists of syndrome 

measurement unit, weight measurement unit and weight 

constraint.  

The purpose of this study is to review the published encoding 

and decoding models in the literature and to critique their 

reliability effects. We will try to reduce the area, maximum 

combinational path delay (MCPD) of decoding algorithm of 

error detection and correction code.  
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