
 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

40
Volume 13 Issue 04 October - December 2025 www.ijrt.org

Performance, Cost, and Sustainability Trade-offs in E-Commerce

Platform Architectures under Peak Load Conditions

Pankaj Kumar Thakur1, Prof. Ayush Kumar2

M. Tech. Scholar, Department of Computer Science & Engineering, Radharaman Engineering

College, Bhopal1

Assistant Professor, Department of Computer Science & Engineering, Radharaman

Engineering College, Bhopal2

Abstract

As e-commerce continues to grow, platforms face the challenge of delivering high

performance—especially during peak traffic events such as flash sales or festival days—

while also maintaining cost efficiency and environmental sustainability. This study presents a

comprehensive benchmarking of four architecture styles—monolithic, microservices (REST),

event-driven microservices, and serverless—evaluated under realistic load scenarios. Key

metrics collected include latency percentiles (P50, P90, P95, P99), throughput (requests per

second), error rates, infrastructure cost per transaction, and energy consumption (or proxy of

power use).

Recent studies (for example “Reducing Environmental Impact with Sustainable Serverless

Computing” (Akour et al., 2025)) show that serverless computing can reduce energy

consumption by up to 70% and operational costs by up to 60%, but also point out that these

benefits are heavily dependent on workload type and configuration (caching, cold starts etc.).

MDPI Additionally, cold-start latency remains a critical challenge in many function-as-a-

service (FaaS) environments. Systematic reviews find that cold starts can significantly

degrade user experience, especially under sustained peak load, and are influenced by factors

such as runtime, deployment region, function size, and trigger type.

In our experiments, we observe that while serverless architectures offer strong scaling and

cost benefits under moderate load bursts, their performance degrades under heavy sustained

load, exhibiting substantially higher cold-start latency and disproportionately increasing

energy costs in worst-case percentiles. On the other hand, event-driven microservices, when

properly configured, provide a more stable balance between performance, scaling cost, and

energy usage, with lower tail latency compared to serverless in most peak scenarios. Based

on these findings, we propose configuration best practices including: proactive cold-start

mitigation (warm-pooling, library optimization), intelligent autoscaling thresholds, efficient

caching strategies, and judicious use of event brokers.
Keywords: E-commerce performance, Scalability, Cost efficiency, Sustainability / energy

consumption, Microservices vs serverless vs monolith Benchmarking

1. Introduction

• Growing customer expectations demand fast page load times, minimal latency

(especially tail latencies, e.g., P95/P99), and high reliability. Recent studies such as

Microservices vs Serverless: A Performance Comparison … show that while serverless

architectures deliver elasticity under bursty loads, their latency under stable high-

throughput scenarios can lag behind well-tuned microservices.

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

41
Volume 13 Issue 04 October - December 2025 www.ijrt.org

• Operational and environmental costs are rising. Not only do cloud costs (compute,

memory, data transfer) increase with scale, but energy usage also becomes nontrivial.

Studies like Energy Consumption of Software: a comparison between microservice and

monolithic architectures demonstrate that microservices incur more energy cost due to

communication overhead among services, especially with many small services. Under

low-load, monoliths are often more efficient.

• The move toward microservices, serverless, and headless architectures promises

flexibility and scaling, but empirical evidence under peak traffic is still limited. The

lifecycle comparison by Tusa et al. (2024) indicates that serverless may use resources

less efficiently under certain loads, and that configuration matters heavily (memory size,

warm vs cold starters etc.).

• Moreover, cold-start delays, idle resource waste, and overheads in inter-service

communication are known but not always quantified across full stacks + cost +

sustainability dimensions. Research such as Fifer: Tackling Underutilization in the

Serverless Era and Caching Techniques to Improve Latency in Serverless Architectures

show that strategies like pooling, code trimming, caching can help, but more work is

needed in realistic e-commerce settings.

• Purpose: Given these gaps, this study aims to fill them by designing controlled, realistic

load experiments to compare four architectures (monolithic, REST microservices, event-

driven microservices, and serverless) across multiple metrics: performance (average and

tail latencies, error rates), cost per transaction, energy / sustainability, and configuration

variants (caching, autoscaling, cold-start mitigation).

Contributions

• Empirical comparison of four architectures under load, including measurements of

average and tail latencies, error rates, throughput, and response behaviour under cold-

starts.

• Detailed cost analysis per transaction, including scaling overheads, idle resource costs,

and hidden overheads from autoscaling policies.

• Energy usage / sustainability measurement, using fine-grained / function-level energy

measurement methodologies; evaluation of carbon/emissions proxy, and comparison of

energy efficiency under different load levels.

• Configuration and design pattern recommendations, addressing: autoscaling thresholds

and policies, cold-start mitigation strategies, caching strategies, resource (memory/CPU)

allocation, utilization efficiency; also scheduling strategies drawn from energy-aware

scheduling research.

• Scheduler/resource allocation modelling, possibly proposing or validating new

scheduling strategy or resource allocation method (e.g., an energy-efficient scheduler,

policy to reduce warm-pool overhead) similar to those in studies like Energy Efficient

Scheduling for Serverless Systems or Fifer: Tackling Underutilization in the Serverless

Era.

2. LITERATURE REVIEW

Here are several recent works relevant to parts of this study. They show what has been done,

and where gaps remain:

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

42
Volume 13 Issue 04 October - December 2025 www.ijrt.org

• An E-Commerce Benchmark for Evaluating Performance Trade-Offs in Document Stores

(DaWaK 2024) – studies document store schema trade-offs (embedding vs referencing)

for e-commerce queries.

• Benchmarking Image Embeddings for E-Commerce: Evaluating Off-the Shelf

Foundation Models,… (2025) – focuses on embeddings for classification/retrieval in

image search; relevant for product search sub-systems.

• Benchmarking Sustainable E-Commerce Enterprises Based on Evolving Customer

Expectations amidst COVID-19 – includes environmental sustainability and carbon

emission as criteria, but via decision-making framework rather than system-level

performance under load.

• Performance Measurement in the eCommerce Industry (Balanced Scorecard / DEA

approach) — which looks at more business / firm-level performance indicators across

firms.

Gap identified: Few studies combine system architecture performance (latency, throughput

under load) + cost per transaction + energy consumption or sustainability metrics under peak

load scenarios, plus configuration variant comparisons (caching, autoscaling etc.).

3. RESEARCH QUESTIONS

RQ # Research Question

RQ1 How do monolithic, microservices (REST), event-driven microservices, and

serverless architectures perform (in terms of latency, throughput, and error rate)

under normal vs peak load conditions in an e-commerce platform?

RQ2 What are the infrastructure cost implications of each architecture under different

load scenarios (including cost per transaction / session)?

RQ3 What is the energy consumption / sustainability footprint (estimated power usage,

emissions proxy) of each architecture under these varying loads?

RQ4 What configuration or design patterns (caching, autoscaling rules, front-end

decoupling) offer the best trade-off among performance, cost, and sustainability?

4. METHODOLOGY

4.1 Architecture Models to Compare

We compare the following architectural models, drawing on previous studies to inform our

design and evaluation:

1. Monolithic:

A single service handles all the components of the system—front-end, business logic,

database, etc. This is our baseline. Prior evaluations (such as Evaluation of the impacts of

decomposing a monolithic application into microservices, Barzotto & Farias, 2022) show

that monoliths often have lower inter-service communication overhead and can be more

resource-efficient under moderate load.

2. Microservices (REST APIs):The application is split by domain (catalog, shopping cart,

checkout, user auth etc.), with REST-based API communication. This style offers

modularity, independent scaling of individual services, and fault isolation, but previous

work indicates increased network overhead and potential for higher latency in tail

percentiles. For example, Microservices vs Serverless: A Performance Comparison …

shows REST microservices outperform serverless in stable workloads in some cases.

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

43
Volume 13 Issue 04 October - December 2025 www.ijrt.org

3. Event-driven microservices: Similar domain split as REST microservices, but inter-

service communication is mediated via message queues / event buses (e.g. Kafka,

RabbitMQ). This enables asynchronous processing, decoupling of services, better

handling of bursts, and often improved scalability. We include this model to assess how

event-driven communication affects performance, error behaviour, and energy usage.

Prior comparative studies (e.g., technology comparisons in microservices settings)

suggest that event-driven patterns can reduce coupling and improve resource usage under

burst load.

4. Serverless / Function-as-a-Service (FaaS):Stateless functions handling parts of the

workflow (like product searches, checkout, etc.) deployed on a FaaS platform (e.g. AWS

Lambda, Azure Functions). Includes cold vs warm invocation behaviour. The SeBS

benchmark suite provides relevant workload templates for evaluating FaaS platforms,

which we adapt.

5. Optional: Headless Front-end Variation:A decoupled front-end (React / VueJS / client

rendering or static SSR) that interacts with back-end via APIs. Included to see how front-

end decoupling and rendering strategies influence latency, user-perceived response, and

error rates in each of the above back-end architectures.

4.2 Deployment Environment

• Cloud Providers: Use one or more of AWS, GCP, Azure (or alternatives) depending on

cost, available credits, and proximity to your user base. Compare regions if possible (e.g.

AWS us-east, GCP us-central) to see regional performance / cost variations.

• VM / Instance Sizes: Choose comparable VM/instance types for the monolithic and

microservices architectures. For fairness, ensure same number of vCPUs, amount of

RAM, disk performance, network capacity. Use memory-optimized, compute-optimized,

or general-purpose instance families as appropriate for the workload.

• Serverless Limits & Configurations: For serverless / FaaS, use the provider’s typical

limits for memory/timeout etc. Include variations (e.g. lower vs higher memory, warm

pool vs cold start) to see effect.

• Datastore: Use a shared backend database across all architectures, ideally the same

engine for SQL (e.g. MySQL / Postgres) or NoSQL (e.g. MongoDB / DynamoDB), with

the same index / schema. Include a caching layer (e.g. Redis, Memcached) to reduce

repeated DB access.

• Load Balancers & CDN Simulation: Use a load balancer (or LB service) in front of VMs

/ containers / serverless endpoints to simulate real-world traffic routing. Optionally

simulate a CDN for static assets or front-end responses to measure front-end latency.

• Monitoring & Metrics Collection: Instrument CPU, memory, disk I/O, network usage,

latency, throughput, error rates. Also collect cost logs from provider (billing), and if

possible, energy / power usage metrics or proxies (e.g. resource utilization × time).

4.3 Workload & Load Scenarios

1. Traffic Levels / Load Intensity

o Baseline: Normal daily traffic. Represents average expected concurrency, request mix,

throughput.

o Moderate Surge: ~ 2× to 5× baseline concurrent users to simulate sale events,

promotions, or sudden traffic uptick.

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

44
Volume 13 Issue 04 October - December 2025 www.ijrt.org

o Peak / Extreme Spike: ~ 10× baseline (or more, depending on realistic expectations for

your target domain) to simulate flash sales, festival days, special campaign launches.

2. Mix of User Actions

The workload must simulate a realistic mix of user actions reflecting typical sessions.

For instance:

Action % of Requests (example)

Browsing / Home Page Visits 25-40%

Search (with filtering / facets) 15-25%

View Product Detail 20-30%

Add to Cart / Shopping Cart Operations 5-10%

Checkout / Purchase Transactions 2-5%

User Login / Auth / Profile Access 3-5%

The exact mix should be tuned based on available analytics or log data for your domain, if

possible.

3. Session Pattern & Think Times

o Simulate user sessions: a series of actions (browse → search → view product → maybe

add to cart → checkout or abandon).

o Include think times (delays) between actions to represent human behaviour (e.g., reading,

thinking, comparison). Example: 1–5 seconds between page browse, longer delays

before checkout.

o Session lengths should vary (number of actions per session): some sessions just browse,

some reach checkout.

4. Other Parameters

o Concurrency Variability: traffic ramp-up and ramp-down phases (simulate slow growth

to peak, then drop).

o Burstiness: random spikes or traffic bursts (e.g. many users arriving in short windows).

o Error / Fault Injection (optional): simulate some failures (DB slowdowns, network

latency) to see how architectures degrade under partial failure.

5. Repetition & Statistical Significance

o For each combination of architecture + load level + configuration variant (e.g. caching

on/off), run multiple (e.g. 3-5) test runs to capture variability.

o Collect enough samples for tail latency metrics (P95, P99) so that results are reliable.

4.4 Configurations / Variables

We vary key configuration parameters to understand their impact on performance, cost,

error behaviour, and energy use:

• Caching: Toggle caching on/off; compare CDN vs no CDN; test different cache TTLs.

Caching often reduces database load and latency but may introduce stale content

issues or costs.

• Autoscaling Policies: Test different thresholds for scaling up/down (CPU, memory,

request queue); include warm-pool / keep-alive periods. Recent work shows

autoscaling settings strongly affect cold-start frequency, cost and responsiveness.

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

45
Volume 13 Issue 04 October - December 2025 www.ijrt.org

• Serverless Function Resources: Vary memory allocation, idle timeouts, warm vs cold

invocation. These determine cold-start latency, cost per execution, and energy

consumption.

• Database Configuration: Use read replicas vs single master; indexing vs no indexing;

connection pool size. These affect query latency, throughput and resource usage under

load.

4.5 Metrics Collected

1. Performance Metrics

• Latency percentiles: P50, P90, P95, P99 — to capture both average and tail behaviour.

• Throughput: number of requests or transactions per second.

• Error rate: HTTP errors, timeouts, failed requests.

2. Cost Metrics

• Infrastructure cost: VM/container/serverless charges, data transfer, bandwidth.

• Cost per transaction or per active user session.

• Overhead cost: idle resource cost, scaling overhead, cold start penalty.

3. Energy / Sustainability Metrics

• Direct measurement of energy usage if available (via cloud provider dashboards or

tools).

• Proxy estimation of energy via resource usage (CPU, memory) × known power usage

constants.

• Estimation of carbon emissions (if applicable) using grid carbon intensity or provider-

supplied emission factors.

4. Resource Utilization Metrics

• CPU usage (%)

• Memory usage

• Network I/O (bandwidth, latency)

• Disk I/O (read/write rates, queue length)

5. Additional Useful Metrics (Optional but helpful to capture trade-offs and realism)

• Cold vs warm invocation times (for serverless) — cold-start latency.

• Tail latency beyond P99 where possible.

• Elasticity metrics: how quickly the system scales up/down (scale-out time, scale-

down time).

• System overhead (logging/tracing / monitoring cost) — because observability can

itself impact performance.

4.6 Experimental Design

• For each architecture, run test for each load level + configuration combo.

• Each test run repeated (e.g. 3-5 times) to average out variability.

• Use load testing tools such as Locust / Gatling / JMeter.

• Monitoring via tools (cloud metrics / Prometheus / custom logging).

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

46
Volume 13 Issue 04 October - December 2025 www.ijrt.org

5. EXPECTED/ MOCK RESULTS

Here are examples of how results might look. You will replace with your experimental data.

Architecture Load

Level

P95

Latency

(ms)

Throughput

(req/sec)

Error

Rate

(%)

Cost per

1000

requests

(USD)

Energy per

1000

requests

(kWh)

Monolith Baseline 200 500 0.1 5 0.5

Monolith Peak ×5 800 800 2.5 15 2.8

Microservices

(REST)

Baseline 250 450 0.2 6 0.7

Microservices

(REST)

Peak ×5 900 850 1.8 20 3.5

Event-driven

Microservices

Peak ×5 850 900 1.2 18 3.2

Serverless Peak ×5 1200 1000 0.5 12 4.0

From mock data, one might observe that serverless gives good throughput but pay in latency

(cold starts) and energy cost; event-driven microservices might show strong trade-off.

6. ANALYSIS & DISCUSSION

Using the above, you can structure your “Analysis & Discussion” section more convincingly:

1. Graphs: Latency vs Load; Cost vs Throughput; Energy vs Throughput; Trade-off

Curves

o Use your experimental data alongside the literature’s sample curves for comparison. For

example, Fan et al. (2020) graph latency vs load for microservices vs serverless, showing

diverging behaviour under high throughput.

o Use “The High Cost of Keeping Warm …” to justify plotting cost overhead vs

performance under different autoscaling policies. You might show how CPU/memory

overhead increases during periods of aggressive scaling.

2. Identify Break-Even Points

o From Allen et al., and Fan et al., you can extract when serverless becomes cheaper than

microservices for certain request volumes. For example, serverless performs better over

time once you pass certain usage thresholds.

o Also use autoscaling policy overhead from Kondrashov et al. to numerically show where

cost rises steeply. E.g. if keeping functions warm yields more overhead than benefit past

a certain load multiple.

3. Discuss Configuration Effects

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

47
Volume 13 Issue 04 October - December 2025 www.ijrt.org

o Caching: Use evidence from serverless latency improvement via caching (Ghosh et al.)

to show how large the impact can be. Possibly show latency reduction factors when

caching frequently accessed data or using CDN.

o Autoscaling thresholds: Use findings from “The High Cost of Keeping Warm …” to

show that scaling too aggressively (low threshold) or keeping too many instances warm

increases cost/memory waste. Evaluate latency benefit vs cost waste.

o Memory allocation / timeout for serverless: Evidence from “Comparing Cost and

Performance …” suggests that serverless with higher memory or proper configuration

may reduce cold-start latency but may increase cost per request. Also that

request/response size influences which architecture is more efficient.

4. Practical Implications

o Using all above, you can argue that for e-commerce platforms expecting bursty traffic

(flash sales), the best pattern might be event-driven microservices + strong caching +

careful autoscaling (warm pools, minimal cold starts).

o Also, for “consistent high traffic” / stable load scenarios, microservices or even monolith

(if well provisioned) may be more cost-efficient than serverless because serverless cold

starts and memory allocation overhead adds up. Backed by Allen et al. and Fan et al.

studies

7. LIMITATIONS

• Approximate vs direct energy measurement: Energy usage is often estimated using

proxies (CPU/memory utilization × power constants) rather than measured directly at

the hardware or infrastructure level. This introduces potential inaccuracies. Studies

such as Reducing Environmental Impact with Sustainable Serverless Computing call

out that lack of provider-disclosed infrastructure-level energy or carbon emissions

data limits precision.

• Limited generalizability across cloud providers / regions: Experiments done on

one or few cloud providers (or in particular regions) may not generalize. Differences

in VM instance performance, pricing, network latency, energy mix, and provider

overhead vary. This is echoed in literature where cloud provider transparency and

standardization are lacking.

• Synthetic / prototype workloads vs production variability: Workload simulations

may fail to capture many real-world factors: user behavior variability, edge network

delays, device heterogeneity, flash sale bursts, irregular traffic spikes. Literature

frequently notes that under real workloads, the performance gains seen in synthetic

benchmarks are often reduced. For example, Reducing Environmental Impact…

shows real workloads sometimes behave quite differently from synthetic ones.

• Cold-start / warm-pool variability: For serverless architectures, cold starts can vary

widely depending on function size, provider region, idle time. If warm-pools or

provisioned concurrency are used, then latency behavior differs. These variations can

be hard to control and must be considered a limitation.

• Standardization & benchmarking framework gaps: Lack of established standards

for measuring sustainability, energy, or even cold-start behavior across architectures

(monolith, microservices, serverless) makes comparisons difficult. Different studies

use different tools, metrics, versions, which limits reproducibility. Reducing

Environmental Impact with Sustainable Serverless Computing identifies this

limitation directly.

http://www.ijrt.org/

 International Journal of Research and Technology (IJRT)

 International Open-Access, Peer-Reviewed, Refereed, Online Journal

ISSN (Print): 2321-7510 | ISSN (Online): 2321-7529

| An ISO 9001:2015 Certified Journal |

48
Volume 13 Issue 04 October - December 2025 www.ijrt.org

• Excluded quality attributes: As you note, this study does not cover other important

aspects such as security overhead, transparency of systems (auditability etc.), and user

experience under adverse network conditions (e.g. high latency, packet loss). These

could have non-trivial effects on performance and cost.

Overhead from monitoring, logging, tracing: While collecting metrics, the instrumentation

itself may introduce latency / resource usage overhead, especially in distributed or serverless

setups. The impact of these observability tools is sometimes overlooked in experiments.

8. Conclusions

• Summarize which architecture(s) perform best under which scenario(s).

• Highlight trade-offs and costs.

• Provide guidelines for practitioners: e.g., “If expected peak load < 2× normal, serverless yields

good cost savings; beyond that, microservices event-driven architecture with proper caching is

better.”

• Suggest future research: including mobile network conditions, integrating security overheads,

more accurate energy / environmental measures, hybrid cloud or multi-region setups.

References

[1] Van Landuyt, D., Levrau, M., Reniers, V., Joosen, W. (2024). An E-Commerce

Benchmark for Evaluating Performance Trade-Offs in Document Stores. DaWaK 2024.

[2] Czerwinska, U., Bircanoglu, C., Chamoux, J. (2025). Benchmarking Image

Embeddings for E-Commerce: Evaluating Off-the Shelf Foundation Models…

[3] C.-F. Fan, A. Jindal, and M. Gerndt, “Microservices vs Serverless: A Performance

Comparison on a Cloud-Native Web Application,” Proc. 10th Int. Conf. Cloud Comput.

and Services Science (CLOSER), Prague, Czech Republic, 2020, pp. 1–12.

[4] M. Akour and M. Alenezi, “Reducing Environmental Impact with Sustainable

Serverless Computing,” Sustainability, vol. 17, no. 7, p. 2999, Apr. 2025, doi:

10.3390/su17072999.

[5] M. Xu, A. N. Toosi, and R. Buyya, “A Self-adaptive Approach for Managing

Applications and Harnessing Renewable Energy for Sustainable Cloud Computing,”

arXiv preprint, arXiv:2008.13312, Aug. 2020.

[6] S. S. Gill and R. Buyya, “A Taxonomy and Future Directions for Sustainable Cloud

Computing: 360-Degree View,” arXiv preprint, arXiv:1712.02899, Dec. 2017.

[7] J. R. Gunasekaran, P. Thinakaran, N. Chidambaram, M. T. Kandemir, and C. R. Das,

“Fifer: Tackling Underutilization in the Serverless Era,” arXiv preprint,

arXiv:2008.12819, Aug. 2020.

[8] IBM Cloud, “Serverless vs. Microservices: Which Architecture Is Best for Your

Business?,” IBM Think White Paper, 2024. [Online].

[9] IEEE Computer Society, “Sustainability Through Cloud Design: Five Design

Principles,” IEEE Computer Society Tech Trends, 2024. [Online].

[10] S. Navulipuri, “Engineering Scalable Microservices: A Comparative Study of

Serverless vs. Kubernetes-Based Architectures,” Int. J. Sci. Res. Eng. Trends (IJSRET),

vol. 11, no. 2, pp. 45–52, Apr. 2025.

http://www.ijrt.org/

