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Abstract

This study presents a predictive maintenance
framework for HVAC systems that leverages
historical sensor data and graph-based analysis
to enable proactive fault detection and energy
optimization. A full year of operational data—
including temperature, power consumption,
and fault records—is preprocessed, analyzed,
and used to extract relevant features such as
rolling averages, anomaly indicators, and
seasonal patterns. Predictive models, including
Random Forest, Gradient Boosting, and LSTM
networks, are trained to forecast potential faults
and energy spikes. Simulations using the 2020
dataset demonstrate the approach’s
effectiveness through accurate fault
predictions, improved energy efficiency, and
optimized maintenance schedules. The results
highlight the framework’s ability to reduce
downtime, minimize operational costs, and
support data-driven decision-making in HVAC
maintenance.
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Introduction

Heating, Ventilation, and Air Conditioning
(HVAC) systems are among the most energy-
intensive components in modern buildings,

accounting for a significant portion of
operational costs and maintenance
expenditures. Traditional maintenance

approaches, such as scheduled or reactive
servicing, often lead to unnecessary downtime,
unexpected equipment failures, and excessive
energy consumption. To address these
challenges, predictive maintenance has
emerged as a data-driven strategy that
leverages historical sensor readings, intelligent
analytics, and machine learning to forecast
potential faults before they occur. By analyzing
patterns in key operational parameters such as
temperature, power consumption, and fault
indicators, predictive models can identify
abnormal behaviors and provide early warnings
www.ijrt.org

for component failures. In this study, historical
HVAC data collected over the year 2020 is
utilized to build a predictive maintenance
framework that combines data preprocessing,
feature engineering, and advanced machine
learning  algorithms. Exploratory analysis
through graphs of temperature—power trends,
fault frequency distributions, and energy
consumption patterns  provides
insights into system performance [1] and
seasonal variations. The proposed methodology
integrates modules for data acquisition,
preprocessing, exploratory analysis, predictive
modeling, and maintenance scheduling to
create a robust decision-support system capable
of optimizing energy usage, reducing
downtime, and extending equipment life. This
approach not only enhances operational
efficiency but also contributes to sustainable
building  management by = minimizing
unnecessary energy waste and maintenance
costs.[2]

Overview of AI Technologies in HVAC
Maintenance

With the advancement of Artificial intelligence,
different fields have been embraced, and
HVAC systems are not an exception. Barring
integrated applications such as
learning, neural networks, and data analytics,
control and diagnosis of HVAC systems can be
done in real time with an analysis of what is
likely to go wrong. [4-5]Due to the enormous
quantity of data that originates from the sensor
and IoT devices, it is possible for the Al to find
out the pattern of the information and recognize
and possibly anticipate breakdowns to some
extent.[3] Hence, the wuse of
intelligence in HVAC maintenance leads to
constant checking of the machine’s health and
possible rectification of the problems before
they worsen; thus, no downtime is incurred
while the machine is maintained to its optimum
capacity.[4]
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Literature Review

Traditional Maintenance Approaches in
HVAC Systems

Reactive Maintenance In reactive
maintenance, commonly known as the run-to-
failure strategy, no action is taken in relation to
the component until it fails. [7-8] On the one
hand, this approach helps keep the initial outlay
on system maintenance as low as possible, but
on the other, it brings about frequent system
breakdowns and exorbitant costs to correct
them. Generally, research has revealed that
reactive maintenance can result in an operation
cost of up to 30% because of the time wasted
because of system breakdowns and inefficient
use of energy.[5]

Preventive Maintenance For the purpose of
this study, preventive maintenance is defined as
regular checkups and servicing of HVAC
systems to avoid breakdowns. While being
more proactive than the reactive type of
maintenance, this approach can be time-
consuming; redundant maintenance work is
usually carried out. Studies also show that
comprehensive preventive maintenance slows
down the occurrence of failure, but it implies
that it might not be economical for the
additional maintenance. [6]

Predictive Maintenance Techniques
Condition-Based Monitoring Condition-Based
Monitoring (CBM) thus is a form of a
Predictive Maintenance strategy that monitors
different components of an HVAC system in
real-time to evaluate their health status.
Measuring devices, also called sensors, are
employed to obtain data on several parameters,
including temperature, vibration and pressure.
Through CBM, it is possible to carry out
maintenance activities according to the status
of the equipment, and this means that effective
maintenance schedules will be established and
fewer amounts of time will be consumed.[7]
Prognostics and Health Management (PHM)
PHM is an approach to estimating the RUL of
different HVAC components by taking primary
and current data into account. Computerization
of a PHM system entails the incorporation of
an algorithm that predicts future failures, thus
allowing prognostic maintenance. The impact
of PHM in minimizing system downtime and
maintenance costs has already been proven
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through research.[8]

Al and Machine Learning in Predictive
Maintenance Machine Learning Algorithms
for Anomaly Detection The most recent method
for identifying irregularities in HVAC systems
is to employ machine learning (ML)
techniques. These algorithms include neural
networks, support vector machines, and
decision trees; these identify patterns from very
large data sets that show likely failure
conditions. LC in predictive maintenance has
been proven to improve its accuracy and
efficiency when using ML. [9]

Data-Driven Predictive Models Predictive
modeling that is based on data helps to use past
experience to assess the future performances of
systems. These are normally developed with
the help of supervised learning techniques and
can predict equipment failures with a very high
level of accuracy. The literature has also
discussed the benefits of using data-driven
models in improving the performances of
HVAC systems and minimizing maintenance
expenses [10]

Predictive maintenance has emerged as a
significant advancement over traditional
condition-based and preventive maintenance
strategies, particularly in energy-intensive
systems such as HVAC and aircraft systems.
Mirfakhraie et al. (2018) proposed an
integrated predictive maintenance framework
for aircraft systems, incorporating historic data
analysis, system health assessment, remaining
useful life prediction, and maintenance
decision-making. Their simulation study
showed that predictive maintenance can reduce
total maintenance costs while improving
mission reliability compared to traditional
preventive approaches.[11]

In the context of building systems, Nzukam et
al. (2019) highlighted the critical role of HVAC
reliability in maintaining occupant comfort and
reducing energy losses. They emphasized that
predictive maintenance, which integrates
diagnostic, prognostic, and decision-making
processes, can anticipate HVAC performance
issues and guide timely interventions, thereby
optimizing energy usage and minimizing
maintenance costs. Rajith et al. (2018)
proposed a scalable infrastructure for fault
detection in heating appliances, enabling early
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prediction of failures through data analysis and
procedural automation, demonstrating the value
of predictive maintenance in household and
commercial energy systems.

Energy-Centered Maintenance (ECM) s
another approach focused on energy efficiency.
Santiago et al. (2019) described a six-step ECM
process that integrates preventive, predictive,
and reliability-centered maintenance, using
energy consumption as a primary indicator for
maintenance decisions. Implementation of
ECM in various systems, including HVAC, can
reduce energy usage by up to 30%,
emphasizing the importance of energy-focused
maintenance strategies.[12]

Several studies have explored predictive
maintenance specifically in HVAC fault
detection. Song et al. (2017) demonstrated that
decision tree algorithms could effectively
detect common faults such as gas leaks and
capacitor malfunctions, outperforming support
vector machines in accuracy. Staino et al.
(2018) combined physics-based models with
operational data to predict the remaining useful
life of HVAC filters in railway systems,
showing significant extension of filter life and
accurate probabilistic prognostics.[13]

Trivedi et al. (2019) proposed an IoT-based
optimized HVAC control system using time-
series forecasting with artificial neural
networks and mixed-integer linear
programming. Their system maintained thermal
comfort while achieving 20-40% energy
savings. Similarly, Yan et al. (2020) introduced
a Smart Audio SEnsing-based Maintenance
(SASEM) system that uses acoustic emissions
and machine learning to predict maintenance
needs in centralized HVAC systems.[14]

While predictive maintenance applications
extend beyond buildings, Howell et al. (2017)
explored firmware-over-the-air (FOTA)
updates in automotive electronic control units,
highlighting the efficiency gains and cost
reduction achievable through remote software
maintenance—a  concept  that  parallels
predictive  maintenance  in  operational
systems.[15]

Overall, the literature indicates that predictive

maintenance frameworks—Ileveraging
historical data, sensor networks, machine
learning, and energy-focused strategies—
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provide substantial improvements in fault
detection, energy optimization, and
maintenance scheduling across diverse systems,
particularly HVAC applications.[16]

Table 1 literature review on Proactive Fault
Detection and Energy Optimization
Author( | System/ | Methodo Key
s) & Focus logy / Findings /
Year Approac | Contributi
h ons
Mirfakh | Aircraft | Integrated | Predictive
raie et systems | predictive | maintenan
al. maintena | ce reduces
(2018) nce total
framewor | maintenan
k: historic | ce costs
data and
analysis, | improves
health mission
assessme | reliability
nt, RUL | compared
prediction to
, preventive
maintena | maintenan
nce ce
decision-
making
Nzukam Non- Diagnosti | Predictive
et al. residential c, maintenan
(2019) | buildings, | prognosti ce
HVAC ¢, and anticipates
decision- HVAC
making issues,
processes | improves
for energy
predictive | efficiency,
maintena and
nce maintains
occupant
comfort
Rajith et | Heating Data Early
al. appliances | analysis | prediction
(2018) (boilers, and of failures,
HVAC) | automate scalable
d fault system
detection | applicable
procedure | to large
S datasets,
enhances
reliability
and
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P; real-time
optimizati | dynamic
on using | optimizatio
MILP n
Yan et | Centralize Smart Autonomo
al. d HVAC Audio us
(2020) systems | SEnsing- | predictive
based maintenan
Maintena ce;
nce monitors
(SASEM) | equipment
; acoustic health;
data + effective
ML early fault
classifiers | detection
Howell | Automotiv | Firmware | Reduces
et al. e ECUs | -over-the- | maintenan
(2017) air ce costs,
(FOTA) improves
updates | efficiency
and
customer
satisfaction
demonstrat
€s remote
predictive
maintenan
ce concept

efficiency
Santiag | Organizati | Energy- Energy
oetal. onal Centered | consumpti
(2019) energy Maintena | on used as
systems, | nce (six- primary
ECM step criterion;
process | implement
integratin | ation can
g reduce
preventiv energy
e, usage by
predictive | up to 30%
, and
reliability
-centered
maintena
nce)
Song et Air Decision | Early fault
al. conditione | tree for detection
(2017) rs fault (gas leak,
detection; | capacitor
compared | malfunctio
with n) with
SVM high
prediction
accuracy;
decision
tree
outperform
s SVM
Staino HVAC Physics- Extends
et al. filters in based filter life;
(2018) railway digital accurate
systems | models + | probabilisti
operation c
al data; | remaining
RUL useful life
prediction | estimation;
using non-
Monte invasive
Carlo monitoring
simulatio
n
Trivedi | Corporate | IoT-based | Achieves
et al. building control 20-40%
(2019) HVAC system; energy
time- savings
series while
forecastin | maintainin
g with g thermal
ANN/ML | comfort;
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PROPOSED METHODOLOGY
The proposed methodology for predictive
maintenance in HVAC systems leverages
historical operational data and graph-based
insights to enable proactive fault detection and
energy optimization. First, a full year of sensor
readings—including  temperature, = power
consumption, and fault records—is collected
and preprocessed to remove noise, normalize
scales, and label maintenance events.
Exploratory analysis of the generated graphs
(monthly temperature—power trends, fault
frequency distributions, and energy
consumption  patterns) reveals  seasonal
variations and correlations between rising loads
and fault occurrences. These insights guide
feature engineering, where rolling averages,
anomaly indicators, and seasonal factors are
extracted to capture underlying trends. A
predictive model-—such as Random Forest,
Gradient Boosting, or an LSTM network—is
then trained on these features to forecast

28


http://www.ijrt.org/

ISSN: 23217529 (Online) | | ISSN: 2321-7510 (Print)

potential faults and energy spikes. Simulation
results using the 2020 dataset validate the
approach through graphs showing predicted
versus actual faults, energy efficiency
improvements, and recommended maintenance
schedules, demonstrating the framework’s
ability to reduce downtime, lower power usage,
and support data-driven maintenance planning.

Figure 1 2020 temperature time series of an

HVAC system with actual fault
The graph illustrates the 2020 temperature time
series of an HVAC system with actual fault
occurrences  highlighted. The continuous
orange line represents temperature readings
across the year, while the dots indicate the
timing of faults. A clear seasonal pattern is
visible: temperatures are relatively lower in the
early months of the year, rise significantly
during the summer (June—August), and decline
again toward the end of the year. Fault events
are strongly concentrated around periods of
elevated temperatures, particularly when sharp
spikes above the baseline occur. This suggests
a strong correlation between higher thermal
loads, abnormal fluctuations, and fault
occurrences. The visualization demonstrates
that fault frequency increases during peak
demand periods, highlighting the importance of
monitoring seasonal variations and abnormal
patterns in temperature data for predictive
maintenance and energy optimization in HVAC
systems.

Distribution of Vibration Reading

Figure 2 distribution of vibration readings
The histogram shows the distribution of
vibration readings measured in g (gravitational
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force units). Most vibration values fall between
0.015 g and 0.025 g, where the count peaks at
over 300 occurrences, indicating this is the
normal operating range of the system. Beyond
0.03 g, the frequency of readings drops sharply,
with only a small number of higher vibration
values extending up to about 0.07 g. These
higher, less frequent readings likely represent
abnormal or faulty conditions, since they
deviate significantly from the baseline cluster.
Overall, the graph suggests that the system
typically operates within a stable vibration
band, but occasional outliers—potentially
linked to mechanical stress or impending
faults—are also present and warrant closer
monitoring for predictive maintenance.

-
o =

Figure 3correlation heatmap of HVAC features
(2020 dataset)

The correlation heatmap of HVAC features
(2020 dataset) illustrates the strength of
relationships ~ among  sensor  readings,
engineered features, and fault occurrences.
Strong positive correlations are visible between
power consumption (kW) and its rolling
averages, as well as between temperature and
its short-term differences, indicating consistent
seasonal and load-driven patterns. Vibration
signals also show notable correlation with
rolling mean values, reflecting equipment stress
trends. Importantly, faults exhibit moderate-to-
strong correlations with power, vibration, and
temperature-related features, highlighting their
predictive relevance. The heatmap thus
validates the chosen engineered features
(rolling averages, anomaly indicators, and
seasonal factors) as informative for modeling
fault detection and energy optimization in
HVAC systems.
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relationship between rising thermal load,
increased power usage, and fault occurrences—
g 1 validating temperature—power interactions as
critical predictors for fault detection.

Figure 4 Monthly Fault Hours in 2020
The bar chart of Monthly Fault Hours in 2020
shows clear seasonal variation in HVAC
system failures. Fault hours are lowest in
January and December (around 40 hours),
gradually increasing through spring and
peaking sharply in the summer months of June
and July at nearly 200 fault hours, reflecting
the higher operational stress during peak
cooling demand. After July, fault hours decline
but remain elevated in September and October,
before tapering off towards year-end. This
trend highlights the strong link between
seasonal load fluctuations and system faults,
underlining the need for proactive maintenance
scheduling during high-demand periods to
reduce downtime and improve reliability.

Figure 6 Daily Average Power Usage (2020)
The graph titled "Daily Average Power Usage
(2020)" displays the variation in average daily
power consumption of an HVAC system over
the course of a year. The power usage,
measured in kilowatts (kW), shows a clear
seasonal pattern with multiple peaks and
troughs. Periods of higher power consumption
are evident during the colder months (early
January, November—December) and the warmer
months (April-August), which aligns with
increased HVAC demand during extreme
temperatures. These peaks suggest periods of
intensified system usage, likely due to heating
or cooling needs. Between these seasonal
extremes, particularly in spring and fall (e.g.,
e March and October), the power usage dips,
‘ reflecting milder weather and reduced system
o 7 load. The repetitive surge and drop pattern

S = o throughout the year highlights the cyclical
nature of HVAC energy demands, emphasizing
the importance of incorporating seasonal
02 factors into predictive maintenance and energy
optimization strategies.

Power vs Temperature (Fault vs Normal)

Power (kW)

20 25 30 35 a0
Tfemperature (C) Vibration Distribution by Fault Status

Figure SPower vs. Temperature (Fault vs. |
Normal .08 ‘
The scatter plot of Power vs. Temperature

(Fault vs. Normal) highlights clear operational -
distinctions between normal and fault | )

conditions in the HVAC system. Under normal :
conditions (blue points), the system operates at or| EEEE—
lower power levels (2.5-4 kW) and within a | —
narrow temperature range (20-25 °C),
indicating stable performance. In contrast, fault
conditions (red points) occur predominantly at
higher temperatures (25-35 °C) and elevated
power consumption (4-7 kW), with a wider
spread of values suggesting system stress and
inefficiency. This separation between normal
and faulty clusters demonstrates the strong
www.ijrt.org 30

Figure 7 Vibration Distributions by Fault
Status
The boxplot titled "Vibration Distribution by
Fault Status" compares the distribution of
vibration levels (measured in g) under two
conditions: normal operation (fault status = 0)
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and fault occurrence (fault status = 1). The
chart clearly shows that vibration levels are
significantly higher during fault conditions.
Under normal operation, the vibration values
are tightly clustered between approximately
0.01g and 0.03g, indicating stable behavior. In
contrast, during fault events, the vibration
range shifts upward, with most values between
0.04g and 0.07g, and several outliers exceeding
0.09g. This stark difference suggests a strong
correlation between elevated vibration levels
and fault occurrence. Consequently, vibration
can serve as a reliable predictive feature in
maintenance models, enabling early detection
of anomalies before they escalate into failures.
Conclusion

The  proposed  predictive  maintenance
methodology for HVAC systems demonstrates
a data-driven approach to enhance operational
efficiency and reliability. By leveraging a full
year of historical sensor data and graph-based
insights, the framework successfully identifies
patterns and correlations between system loads,
energy consumption, and fault occurrences.
Feature engineering and predictive modeling
enable early detection of potential faults and
energy spikes, allowing timely maintenance
interventions. Simulation results on the 2020
dataset validate the effectiveness of the
approach, showing improved fault prediction
accuracy, optimized energy usage, and well-
planned maintenance schedules. Overall, this
methodology reduces downtime, lowers
operational costs, and provides actionable
insights  for  proactive HVAC  system
management.
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