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Abstract 

This study presents a predictive maintenance 

framework for HVAC systems that leverages 

historical sensor data and graph-based analysis 

to enable proactive fault detection and energy 

optimization. A full year of operational data—

including temperature, power consumption, 

and fault records—is preprocessed, analyzed, 

and used to extract relevant features such as 

rolling averages, anomaly indicators, and 

seasonal patterns. Predictive models, including 

Random Forest, Gradient Boosting, and LSTM 

networks, are trained to forecast potential faults 

and energy spikes. Simulations using the 2020 

dataset demonstrate the approach’s 

effectiveness through accurate fault 

predictions, improved energy efficiency, and 

optimized maintenance schedules. The results 

highlight the framework’s ability to reduce 

downtime, minimize operational costs, and 

support data-driven decision-making in HVAC 

maintenance. 

Keywords:- Predictive Maintenance, HVAC 

Systems, Fault Detection, Energy Optimization 

Introduction 

Heating, Ventilation, and Air Conditioning 

(HVAC) systems are among the most energy‐

intensive components in modern buildings, 

accounting for a significant portion of 

operational costs and maintenance 

expenditures. Traditional maintenance 

approaches, such as scheduled or reactive 

servicing, often lead to unnecessary downtime, 

unexpected equipment failures, and excessive 

energy consumption. To address these 

challenges, predictive maintenance has 

emerged as a data-driven strategy that 

leverages historical sensor readings, intelligent 

analytics, and machine learning to forecast 

potential faults before they occur. By analyzing 

patterns in key operational parameters such as 

temperature, power consumption, and fault 

indicators, predictive models can identify 

abnormal behaviors and provide early warnings 

for component failures. In this study, historical 

HVAC data collected over the year 2020 is 

utilized to build a predictive maintenance 

framework that combines data preprocessing, 

feature engineering, and advanced machine 

learning algorithms. Exploratory analysis 

through graphs of temperature–power trends, 

fault frequency distributions, and energy 

consumption patterns provides valuable 

insights into system performance [1] and 

seasonal variations. The proposed methodology 

integrates modules for data acquisition, 

preprocessing, exploratory analysis, predictive 

modeling, and maintenance scheduling to 

create a robust decision-support system capable 

of optimizing energy usage, reducing 

downtime, and extending equipment life. This 

approach not only enhances operational 

efficiency but also contributes to sustainable 

building management by minimizing 

unnecessary energy waste and maintenance 

costs.[2] 

Overview of AI Technologies in HVAC 

Maintenance 

With the advancement of Artificial intelligence, 

different fields have been embraced, and 

HVAC systems are not an exception. Barring 

integrated applications such as machine 

learning, neural networks, and data analytics, 

control and diagnosis of HVAC systems can be 

done in real time with an analysis of what is 

likely to go wrong. [4-5]Due to the enormous 

quantity of data that originates from the sensor 

and IoT devices, it is possible for the AI to find 

out the pattern of the information and recognize 

and possibly anticipate breakdowns to some 

extent.[3] Hence, the use of artificial 

intelligence in HVAC maintenance leads to 

constant checking of the machine’s health and 

possible rectification of the problems before 

they worsen; thus, no downtime is incurred 

while the machine is maintained to its optimum 

capacity.[4] 
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Literature Review 

 Traditional Maintenance Approaches in 

HVAC Systems  

Reactive Maintenance In reactive 

maintenance, commonly known as the run-to-

failure strategy, no action is taken in relation to 

the component until it fails. [7-8] On the one 

hand, this approach helps keep the initial outlay 

on system maintenance as low as possible, but 

on the other, it brings about frequent system 

breakdowns and exorbitant costs to correct 

them. Generally, research has revealed that 

reactive maintenance can result in an operation 

cost of up to 30% because of the time wasted 

because of system breakdowns and inefficient 

use of energy.[5] 

Preventive Maintenance For the purpose of 

this study, preventive maintenance is defined as 

regular checkups and servicing of HVAC 

systems to avoid breakdowns. While being 

more proactive than the reactive type of 

maintenance, this approach can be time-

consuming; redundant maintenance work is 

usually carried out. Studies also show that 

comprehensive preventive maintenance slows 

down the occurrence of failure, but it implies 

that it might not be economical for the 

additional maintenance. [6] 

Predictive Maintenance Techniques 

Condition-Based Monitoring Condition-Based 

Monitoring (CBM) thus is a form of a 

Predictive Maintenance strategy that monitors 

different components of an HVAC system in 

real-time to evaluate their health status. 

Measuring devices, also called sensors, are 

employed to obtain data on several parameters, 

including temperature, vibration and pressure. 

Through CBM, it is possible to carry out 

maintenance activities according to the status 

of the equipment, and this means that effective 

maintenance schedules will be established and 

fewer amounts of time will be consumed.[7] 

Prognostics and Health Management (PHM) 

PHM is an approach to estimating the RUL of 

different HVAC components by taking primary 

and current data into account. Computerization 

of a PHM system entails the incorporation of 

an algorithm that predicts future failures, thus 

allowing prognostic maintenance. The impact 

of PHM in minimizing system downtime and 

maintenance costs has already been proven 

through research.[8] 

AI and Machine Learning in Predictive 

Maintenance  Machine Learning Algorithms 

for Anomaly Detection The most recent method 

for identifying irregularities in HVAC systems 

is to employ machine learning (ML) 

techniques. These algorithms include neural 

networks, support vector machines, and 

decision trees; these identify patterns from very 

large data sets that show likely failure 

conditions. LC in predictive maintenance has 

been proven to improve its accuracy and 

efficiency when using ML. [9] 

Data-Driven Predictive Models Predictive 

modeling that is based on data helps to use past 

experience to assess the future performances of 

systems. These are normally developed with 

the help of supervised learning techniques and 

can predict equipment failures with a very high 

level of accuracy. The literature has also 

discussed the benefits of using data-driven 

models in improving the performances of 

HVAC systems and minimizing maintenance 

expenses [10] 

Predictive maintenance has emerged as a 

significant advancement over traditional 

condition-based and preventive maintenance 

strategies, particularly in energy-intensive 

systems such as HVAC and aircraft systems. 

Mirfakhraie et al. (2018) proposed an 

integrated predictive maintenance framework 

for aircraft systems, incorporating historic data 

analysis, system health assessment, remaining 

useful life prediction, and maintenance 

decision-making. Their simulation study 

showed that predictive maintenance can reduce 

total maintenance costs while improving 

mission reliability compared to traditional 

preventive approaches.[11] 

In the context of building systems, Nzukam et 

al. (2019) highlighted the critical role of HVAC 

reliability in maintaining occupant comfort and 

reducing energy losses. They emphasized that 

predictive maintenance, which integrates 

diagnostic, prognostic, and decision-making 

processes, can anticipate HVAC performance 

issues and guide timely interventions, thereby 

optimizing energy usage and minimizing 

maintenance costs. Rajith et al. (2018) 

proposed a scalable infrastructure for fault 

detection in heating appliances, enabling early 
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prediction of failures through data analysis and 

procedural automation, demonstrating the value 

of predictive maintenance in household and 

commercial energy systems. 

Energy-Centered Maintenance (ECM) is 

another approach focused on energy efficiency. 

Santiago et al. (2019) described a six-step ECM 

process that integrates preventive, predictive, 

and reliability-centered maintenance, using 

energy consumption as a primary indicator for 

maintenance decisions. Implementation of 

ECM in various systems, including HVAC, can 

reduce energy usage by up to 30%, 

emphasizing the importance of energy-focused 

maintenance strategies.[12] 

Several studies have explored predictive 

maintenance specifically in HVAC fault 

detection. Song et al. (2017) demonstrated that 

decision tree algorithms could effectively 

detect common faults such as gas leaks and 

capacitor malfunctions, outperforming support 

vector machines in accuracy. Staino et al. 

(2018) combined physics-based models with 

operational data to predict the remaining useful 

life of HVAC filters in railway systems, 

showing significant extension of filter life and 

accurate probabilistic prognostics.[13] 

Trivedi et al. (2019) proposed an IoT-based 

optimized HVAC control system using time-

series forecasting with artificial neural 

networks and mixed-integer linear 

programming. Their system maintained thermal 

comfort while achieving 20–40% energy 

savings. Similarly, Yan et al. (2020) introduced 

a Smart Audio SEnsing-based Maintenance 

(SASEM) system that uses acoustic emissions 

and machine learning to predict maintenance 

needs in centralized HVAC systems.[14] 

While predictive maintenance applications 

extend beyond buildings, Howell et al. (2017) 

explored firmware-over-the-air (FOTA) 

updates in automotive electronic control units, 

highlighting the efficiency gains and cost 

reduction achievable through remote software 

maintenance—a concept that parallels 

predictive maintenance in operational 

systems.[15] 

Overall, the literature indicates that predictive 

maintenance frameworks—leveraging 

historical data, sensor networks, machine 

learning, and energy-focused strategies—

provide substantial improvements in fault 

detection, energy optimization, and 

maintenance scheduling across diverse systems, 

particularly HVAC applications.[16] 

Table 1  literature review on Proactive Fault 

Detection and Energy Optimization 

Author(

s) & 

Year 

System / 

Focus 

Methodo

logy / 

Approac

h 

Key 

Findings / 

Contributi

ons 

Mirfakh

raie et 

al. 

(2018) 

Aircraft 

systems 

Integrated 

predictive 

maintena

nce 

framewor

k: historic 

data 

analysis, 

health 

assessme

nt, RUL 

prediction

, 

maintena

nce 

decision-

making 

Predictive 

maintenan

ce reduces 

total 

maintenan

ce costs 

and 

improves 

mission 

reliability 

compared 

to 

preventive 

maintenan

ce 

Nzukam 

et al. 

(2019) 

Non-

residential 

buildings, 

HVAC 

Diagnosti

c, 

prognosti

c, and 

decision-

making 

processes 

for 

predictive 

maintena

nce 

Predictive 

maintenan

ce 

anticipates 

HVAC 

issues, 

improves 

energy 

efficiency, 

and 

maintains 

occupant 

comfort 

Rajith et 

al. 

(2018) 

Heating 

appliances 

(boilers, 

HVAC) 

Data 

analysis 

and 

automate

d fault 

detection 

procedure

s 

Early 

prediction 

of failures, 

scalable 

system 

applicable 

to large 

datasets, 

enhances 

reliability 

and 
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efficiency 

Santiag

o et al. 

(2019) 

Organizati

onal 

energy 

systems, 

ECM 

Energy-

Centered 

Maintena

nce (six-

step 

process 

integratin

g 

preventiv

e, 

predictive

, and 

reliability

-centered 

maintena

nce) 

Energy 

consumpti

on used as 

primary 

criterion; 

implement

ation can 

reduce 

energy 

usage by 

up to 30% 

Song et 

al. 

(2017) 

Air 

conditione

rs 

Decision 

tree for 

fault 

detection; 

compared 

with 

SVM 

Early fault 

detection 

(gas leak, 

capacitor 

malfunctio

n) with 

high 

prediction 

accuracy; 

decision 

tree 

outperform

s SVM 

Staino 

et al. 

(2018) 

HVAC 

filters in 

railway 

systems 

Physics-

based 

digital 

models + 

operation

al data; 

RUL 

prediction 

using 

Monte 

Carlo 

simulatio

n 

Extends 

filter life; 

accurate 

probabilisti

c 

remaining 

useful life 

estimation; 

non-

invasive 

monitoring 

Trivedi 

et al. 

(2019) 

Corporate 

building 

HVAC 

IoT-based 

control 

system; 

time-

series 

forecastin

g with 

ANN/ML

Achieves 

20–40% 

energy 

savings 

while 

maintainin

g thermal 

comfort; 

P; 

optimizati

on using 

MILP 

real-time 

dynamic 

optimizatio

n 

Yan et 

al. 

(2020) 

Centralize

d HVAC 

systems 

Smart 

Audio 

SEnsing-

based 

Maintena

nce 

(SASEM)

; acoustic 

data + 

ML 

classifiers 

Autonomo

us 

predictive 

maintenan

ce; 

monitors 

equipment 

health; 

effective 

early fault 

detection 

Howell 

et al. 

(2017) 

Automotiv

e ECUs 

Firmware

-over-the-

air 

(FOTA) 

updates 

Reduces 

maintenan

ce costs, 

improves 

efficiency 

and 

customer 

satisfaction

; 

demonstrat

es remote 

predictive 

maintenan

ce concept 

PROPOSED METHODOLOGY 

The proposed methodology for predictive 

maintenance in HVAC systems leverages 

historical operational data and graph-based 

insights to enable proactive fault detection and 

energy optimization. First, a full year of sensor 

readings—including temperature, power 

consumption, and fault records—is collected 

and preprocessed to remove noise, normalize 

scales, and label maintenance events. 

Exploratory analysis of the generated graphs 

(monthly temperature–power trends, fault 

frequency distributions, and energy 

consumption patterns) reveals seasonal 

variations and correlations between rising loads 

and fault occurrences. These insights guide 

feature engineering, where rolling averages, 

anomaly indicators, and seasonal factors are 

extracted to capture underlying trends. A 

predictive model—such as Random Forest, 

Gradient Boosting, or an LSTM network—is 

then trained on these features to forecast 
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potential faults and energy spikes. Simulation 

results using the 2020 dataset validate the 

approach through graphs showing predicted 

versus actual faults, energy efficiency 

improvements, and recommended maintenance 

schedules, demonstrating the framework’s 

ability to reduce downtime, lower power usage, 

and support data-driven maintenance planning. 

 
Figure 1 2020 temperature time series of an 

HVAC system with actual fault 

The graph illustrates the 2020 temperature time 

series of an HVAC system with actual fault 

occurrences highlighted. The continuous 

orange line represents temperature readings 

across the year, while the dots indicate the 

timing of faults. A clear seasonal pattern is 

visible: temperatures are relatively lower in the 

early months of the year, rise significantly 

during the summer (June–August), and decline 

again toward the end of the year. Fault events 

are strongly concentrated around periods of 

elevated temperatures, particularly when sharp 

spikes above the baseline occur. This suggests 

a strong correlation between higher thermal 

loads, abnormal fluctuations, and fault 

occurrences. The visualization demonstrates 

that fault frequency increases during peak 

demand periods, highlighting the importance of 

monitoring seasonal variations and abnormal 

patterns in temperature data for predictive 

maintenance and energy optimization in HVAC 

systems. 

 
Figure 2 distribution of vibration readings 

The histogram shows the distribution of 

vibration readings measured in g (gravitational 

force units). Most vibration values fall between 

0.015 g and 0.025 g, where the count peaks at 

over 300 occurrences, indicating this is the 

normal operating range of the system. Beyond 

0.03 g, the frequency of readings drops sharply, 

with only a small number of higher vibration 

values extending up to about 0.07 g. These 

higher, less frequent readings likely represent 

abnormal or faulty conditions, since they 

deviate significantly from the baseline cluster. 

Overall, the graph suggests that the system 

typically operates within a stable vibration 

band, but occasional outliers—potentially 

linked to mechanical stress or impending 

faults—are also present and warrant closer 

monitoring for predictive maintenance. 

 
Figure 3correlation heatmap of HVAC features 

(2020 dataset) 

The correlation heatmap of HVAC features 

(2020 dataset) illustrates the strength of 

relationships among sensor readings, 

engineered features, and fault occurrences. 

Strong positive correlations are visible between 

power consumption (kW) and its rolling 

averages, as well as between temperature and 

its short-term differences, indicating consistent 

seasonal and load-driven patterns. Vibration 

signals also show notable correlation with 

rolling mean values, reflecting equipment stress 

trends. Importantly, faults exhibit moderate-to-

strong correlations with power, vibration, and 

temperature-related features, highlighting their 

predictive relevance. The heatmap thus 

validates the chosen engineered features 

(rolling averages, anomaly indicators, and 

seasonal factors) as informative for modeling 

fault detection and energy optimization in 

HVAC systems. 
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Figure 4 Monthly Fault Hours in 2020 

The bar chart of Monthly Fault Hours in 2020 

shows clear seasonal variation in HVAC 

system failures. Fault hours are lowest in 

January and December (around 40 hours), 

gradually increasing through spring and 

peaking sharply in the summer months of June 

and July at nearly 200 fault hours, reflecting 

the higher operational stress during peak 

cooling demand. After July, fault hours decline 

but remain elevated in September and October, 

before tapering off towards year-end. This 

trend highlights the strong link between 

seasonal load fluctuations and system faults, 

underlining the need for proactive maintenance 

scheduling during high-demand periods to 

reduce downtime and improve reliability. 

 

 
Figure 5Power vs. Temperature (Fault vs. 

Normal 

The scatter plot of Power vs. Temperature 

(Fault vs. Normal) highlights clear operational 

distinctions between normal and fault 

conditions in the HVAC system. Under normal 

conditions (blue points), the system operates at 

lower power levels (2.5–4 kW) and within a 

narrow temperature range (20–25 °C), 

indicating stable performance. In contrast, fault 

conditions (red points) occur predominantly at 

higher temperatures (25–35 °C) and elevated 

power consumption (4–7 kW), with a wider 

spread of values suggesting system stress and 

inefficiency. This separation between normal 

and faulty clusters demonstrates the strong 

relationship between rising thermal load, 

increased power usage, and fault occurrences—

validating temperature–power interactions as 

critical predictors for fault detection. 

 
Figure 6 Daily Average Power Usage (2020) 

The graph titled "Daily Average Power Usage 

(2020)" displays the variation in average daily 

power consumption of an HVAC system over 

the course of a year. The power usage, 

measured in kilowatts (kW), shows a clear 

seasonal pattern with multiple peaks and 

troughs. Periods of higher power consumption 

are evident during the colder months (early 

January, November–December) and the warmer 

months (April–August), which aligns with 

increased HVAC demand during extreme 

temperatures. These peaks suggest periods of 

intensified system usage, likely due to heating 

or cooling needs. Between these seasonal 

extremes, particularly in spring and fall (e.g., 

March and October), the power usage dips, 

reflecting milder weather and reduced system 

load. The repetitive surge and drop pattern 

throughout the year highlights the cyclical 

nature of HVAC energy demands, emphasizing 

the importance of incorporating seasonal 

factors into predictive maintenance and energy 

optimization strategies. 

 
Figure 7 Vibration Distributions by Fault 

Status 

The boxplot titled "Vibration Distribution by 

Fault Status" compares the distribution of 

vibration levels (measured in g) under two 

conditions: normal operation (fault status = 0) 

http://www.ijrt.org/


ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 4, 2021 

www.ijrt.org 31 

 

 

and fault occurrence (fault status = 1). The 

chart clearly shows that vibration levels are 

significantly higher during fault conditions. 

Under normal operation, the vibration values 

are tightly clustered between approximately 

0.01g and 0.03g, indicating stable behavior. In 

contrast, during fault events, the vibration 

range shifts upward, with most values between 

0.04g and 0.07g, and several outliers exceeding 

0.09g. This stark difference suggests a strong 

correlation between elevated vibration levels 

and fault occurrence. Consequently, vibration 

can serve as a reliable predictive feature in 

maintenance models, enabling early detection 

of anomalies before they escalate into failures. 

Conclusion 

The proposed predictive maintenance 

methodology for HVAC systems demonstrates 

a data-driven approach to enhance operational 

efficiency and reliability. By leveraging a full 

year of historical sensor data and graph-based 

insights, the framework successfully identifies 

patterns and correlations between system loads, 

energy consumption, and fault occurrences. 

Feature engineering and predictive modeling 

enable early detection of potential faults and 

energy spikes, allowing timely maintenance 

interventions. Simulation results on the 2020 

dataset validate the effectiveness of the 

approach, showing improved fault prediction 

accuracy, optimized energy usage, and well-

planned maintenance schedules. Overall, this 

methodology reduces downtime, lowers 

operational costs, and provides actionable 

insights for proactive HVAC system 

management. 
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