
ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 3, November_ 2021

www.ijrt.org 90

High Speed and Area Efficient Adjoint Matrix using Booth

Multiplier for FPGA Implementation

Rohit Sachan
1
, Prof. Suresh. S. Gawande

2
, Prof. Satyarth Tiwari

3

M. Tech. Scholar, Department of Electronics and Communication, Rkdf college of engineering, Bhabha University, Bhopal
1

Guide, Department of Electronics and Communication, Rkdf college of engineering, Bhabha University, Bhopal
2

Co-guide, Department of Electronics and Communication, Rkdf college of engineering, Bhabha University, Bhopal
3

 Abstract— Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand of

high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder

performance. Matrix multiplication is the kernel operation used in many transform, image and discrete signal processing

application. We develop new algorithms and new techniques for matrix multiplication on configurable devices. In this paper, we

have proposed three designs for matrix-matrix multiplication. These design reduced hardware complexity, throughput rate and

different input/output data format to match different application needs. In spite of complexity involved in floating point

arithmetic, its implementation is increasing day by day. Due to which high speed adder architecture become important. Several

adder architecture designs have been developed to increase the efficiency of the adder. In this paper, we introduce an architecture

that performs high speed IEEE 754 floating point multiplier using carry select adder (CSA). Here we are introduced two carry

select based design. These designs are implementation Xilinx Vertex device family.

Keywords— IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating Point (DP FP), Matrix Multiplication

1. INTRODUCTION

With the growth in scale of integration circuits, more and more sophisticated digital signal processing circuits are being

implemented in (field programmable gate array) FPGA based circuit. Indeed, FPGA have become an attractive fabric for the

implementation of computationally intensive application such as digital signal processing, image, graphics card and network

processing tasks used in wireless communication. These complex signal processing circuits not only demand large computational

capacity but also have high energy and area requirements. Though area and speed of operation remain the major design concerns,

power consumption is also emerging as a critical factor for present VLSI system designers [1]-[4]. The need for low power VLSI

design has two major motivations. First, with increase in operating frequency and processing capacity per chip, large current have

to be delivered and the heat generated due to large power consumption has to be dissipated by proper cooling techniques, which

account for additional system cost. Secondly, the exploding market of portable electronic appliances demands for complex circuits

to be powered by lightweight batteries with long times between re-charges (for instance [5].

Another major implication of excess power consumption is that it limits integrating more transistors on a single chip or on a

multiple-chip module. Unless power consumption is dramatically reduced, the resulting heat will limit the feasible packing and

performance of VLSI circuits and systems. From the environmental viewpoint, the smaller the power dissipation of electronic

systems, the lower heat pumped into the surrounding, the lower the electricity consumed and hence, lowers the impact on global

environment [6].

Matrix multiplication is commonly used in most signal processing algorithms. It is also a frequently used kernel operation in a

wide variety of graphics, image processing as well as robotic applications. The matrix multiplication operation involves a large

number of multiplication as well as accumulation. Multipliers have large area, longer latency and consume considerable power

compared to adders. Registers, which are required to store the intermediate product values, are also major power intensive

component [7]. These components pose a major challenge for designing VLSI structures for large-order matrix multipliers with

optimized speed and chip-area. However, area, speed and power are usually conflicting hardware constraints such that improving

upon one factor degrades the other two. The real numbers represented in binary format are known as floating point numbers.

Based on IEEE-754 standard, floating point formats are classified into binary and decimal interchange formats. Floating point

multipliers are very important in dsp applications. This paper focuses on double precision normalized binary interchange format.

Figure 1 shows the IEEE-754 double precision binary format representation. Sign (s) is represented with one bit, exponent (e) and

fraction (m or mantissa) are represented with eleven and fifty two bits respectively.

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 3, November_ 2021

www.ijrt.org 91

II. DIFFERENT TYPES OF ADDER

Parallel Adder:-

Parallel adder can add all bits in parallel manner i.e. simultaneously hence increased the addition speed. In this adder multiple full adders are

used to add the two corresponding bits of two binary numbers and carry bit of the previous adder. It produces sum bits and carry bit for the next

stage adder. In this adder multiple carry produced by multiple adders are rippled, i.e. carry bit produced from an adder works as one of the input

for the adder in its succeeding stage. Hence sometimes it is also known as Ripple Carry Adder (RCA). Generalized diagram of parallel adder is

shown in figure 3.

Figure 1: Parallel Adder (n=7 for SPFP and n=10 for DPFP)

An n-bit parallel adder has one half adder and n-1full adders if the last carry bit required. But in 754 multiplier‘s exponent adder, last carry out

does not required so we can use XOR Gate instead of using the last full adder. It not only reduces the area occupied by the circuit but also

reduces the delay involved in calculation. For SPFP and DPFP multiplier‘s exponent adder, here we Simulate 8 bit and 11 bit parallel adders

respectively as show in figure 4.

Figure 2: Modified Parallel Adder (n=7 for SPFP and n=10 for DPFP)

Carry Select Adder:-

Carry select adder uses multiplexer along with RCAs in which the carry is used as a select input to choose the correct output sum bits as well as

carry bit. Due to this, it is called Carry select adder. In this adder two RCAs are used to calculate the sum bits simultaneously for the same bits

assuming two different carry inputs i.e. ‗1‘ and ‗0‘. It is the responsibility of multiplexer to choose correct output bits out of the two, once the

correct carry input is known to it. Multiplexer delay is included in this adder. Generalized figure of Carry select adder is shown in figure 3.9.

Adders are the basic building blocks of most of the ALUs (Arithmetic logic units) used in Digital signal processing and various other

applications. Many types of adders are available in today‘s scenario and many more are developing day by day. Half adder and Full adder are

the two basic types of adders. Almost all other adders are made with the different arrangements of these two basic adders only. Half adder is

used to add two bits and produce sum and carry bits whereas full adder can add three bits simultaneously and produces sum and carry bits.

Figure 3: Carry Select Adder

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 3, November_ 2021

www.ijrt.org 92

III. PROPOSED METHODOLOGY

Proposed Parallel-Parallel Input and Multi Output(PPI-MO)

In this design, we opted for faster operating speed by increasing the number of multipliers and registers performing the matrix

multiplication operation. From equation 2 we have derived for parallel computation of 3 × 3 matrix-matrix multiplication and the

structure is shown in figure 4.

For an n×n matrix – matrix multiplication, the operation is performed using
2n number of multipliers,

2n number of registers and

nn 2
 number of adders. The registers are used to store the partial product results. Each of the

2n number of multipliers has

one input from matrix B and the other input is obtained from a particular element of matrix A.

The dataflow for matrix B is in row major order and is fed simultaneously to the particular row of multipliers such that the
thi

row of matrix B is simultaneously input to the
thi row of multipliers, where 1 < i < n . The elements of matrix are input to the

multipliers such that,
thij),(element of matrix A is input to

The
thji),(multiplier, where1 < i,j < n. The resultant products from each column of multipliers are then added to give the

elements of output matrix C. In one cycle, n elements of matrix C are calculated, so the entire matrix the elements of matrix C are

obtained in column major order with n elements multiplication operation requires n cycles to complete.

Let us consider the example of a 3×3 matrix – matrix multiplication operation, for a better analysis of the design (as shown in

figure 1). The hardware complexities involved for this design are 9 multipliers, 9 registers and 6 adders. Elements from the first

row of matrix B (b11 b12 b13) are input simultaneously to the first row of multipliers (M11 M12 M13) in 3 cycles. Similarly, elements

from other two rows of matrix B are input to the rest two rows of multipliers. A single element from matrix A is input to each of

the multipliers such that,
thij),(element of matrix A is input to the multiplier Mij, where 1 < i,j < 3. The resultant partial

products from each column of multipliers (M1k M2k M3k where 1 < k 3) are added up in the adder to output the elements of matrix

C. In each cycle, one column of elements from matrix C is obtained (C1k C2k C3k where1 < k < 3) and so the entire matrix

multiplication operation is completed in 3 cycles.

Booth Multiplier
There is no need to take the sign of the number into deliberation in dealing with unsigned multiplication. However in signed
multiplication the process will be changed because the signed number is in a 2‘s compliment pattern which would give a wrong
result if multiplied by using similar process for unsigned multiplication [6]. Booth‘s algorithm is used for this. Booth‘s algorithm
preserves the sign of the result. Booth multiplication allows for smaller, faster multiplication circuits through encoding the signed
numbers to 2‘s complement, which is also a standard technique used in chip design, [6] and provides significant improvements by
reducing the number of partial product to half over ―long multiplication‖ techniques. Radix 2 is the conventional booth multiplier.

b31

b32

b33

b21

b22

b23

b11

b12

b13

a11 a21 a31

a12 a22 a32

a13 a23 a33

c33 c32 c31 c23 c22 c21 c13 c12 c11

Adder Adder Adder

Figure 4: Proposed PPI – MO Design for n = 3

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 3, November_ 2021

www.ijrt.org 93

Radix 2
In booth multiplication, partial product generation is done based on recoding scheme e.g. radix 2 encoding. Bits of multiplicand (Y)
are grouped from left to right and corresponding operation on multiplier (X) is done in order to generate the partial product [19]. In
radix-2 booth multiplication partial product generation is done based on encoding which is as given by Table1. Parallel Recoding
scheme used in radix-2 booth multiplier is shown in the Table 1.

Table 1: Booth recoding for radix 2

Radix-4

To further decrease the number of partial products, algorithms with higher radix value are used. In radix-4 algorithm grouping of

multiplier bits is done in such a way that each group consists of 3 bits as mentioned in table 1. Similarly the next pair is the

overlapping of the first pair in which MSB of the first pair will be the LSB of the second pair and other two bits. Number of

groups formed is dependent on number of multiplier bits. By applying this algorithm, the number of partial product rows to be

accumulated is reduced from n in radix-2 algorithm to n/2 in radix-4 algorithm. The grouping of multiplier bits for 8-bit of

multiplication is shown in figure 5.

Figure 5: Grouping of multiplier bits in Radix-4 Booth algorithm

For 8-bit multiplier the number groups formed is four using radix-4 booth algorithm. Compared to radix-2 booth algorithm the

number of partial products obtained in radix-4 booth algorithm is half because for 8-bit multiplier radix-2 algorithm produces

eight partial products. The truth table and the respective operation is depicted in table 1. Similarly when radix-8 booth algorithm is

applied to multiplier of 8-bits each group will consists of four bits and the number of groups formed is 3. For 8x8 multiplications,

radix-4 uses four stages to compute the final product and radix-8 booth algorithm uses three stages to compute the product. In this

thesis, radix-4 booth algorithm is used for 8x8 multiplication because number components used in radix-4 encoding style.

Table 2: Truth Table for Radix-4 Booth algorithm

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 3, November_ 2021

www.ijrt.org 94

IV. SIMULATION RESULT
All the designing and experiment regarding algorithm that we have mentioned in this paper is being developed on Xilinx 6.2i updated version.

Xilinx 6.2i has couple of the striking features such as low memory requirement, fast debugging, and low cost. The latest release of ISETM

(Integrated Software Environment) design tool provides the low memory requirement approximate 27 percentage low. ISE 6.2i that provides

advanced tools like smart compile technology with better usage of their computing hardware provides faster timing closure and higher quality of

results for a better time to designing solution.
Table 3: Comparison Result

Table 4: Simulation result for 3×3 and 4×4 Matrix Multiplication

Structure Dimension Slice LUTs IOBs Delay (ns)

Previous Design [1]

3×3

112 164 81 15.517

MM using PPI-SO 44 15 34 11.222

MM using PPI-MO 93 154 74 15.058

MM using PFI-MO 34 55 38 9.128

Previous Design [1]

4×4

248 412 96 17.227

MM using PPI-SO 49 88 42 13.771

MM using PPI-MO 221 388 74 15.058

MM using PFI-MO 39 72 48 11.543

V. CONCLUSION

Most of the digital signal processing (DSP) algorithms is formulated as matrix-matrix multiplication, matrix-vector multiplication

and vector-vector (Inner-product and outer-product) form. Few such algorithms are digital filtering, sinusoidal transforms,

wavelet transform etc. The size of matrix multiplication or inner-product computation is usually large for various practical

applications. On the other hand, most of these algorithms are currently implemented in hardware to meet the temporal requirement

of real-time application [9]. When large size matrix multiplication or inner product computation is implemented in hardware, the

design is resource intensive. It consumes large amount of chip area and power. With such a vast application domain, new designs

are required to cater to the constraints of chip area and power and high speed.

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 9, Issue 3, November_ 2021

www.ijrt.org 95

IEEE754 standardize two basic formats for representing floating point numbers namely, single precision floating point and double

precision floating point. Floating point arithmetic has vast applications in many areas like robotics and DSP. Delay provided and

area required by hardware are the two key factors which are need to be consider Here we present single precision floating point

multiplier by using two different adders namely modified CSA with dual RCA and modified CSA with RCA and BEC.

REFRENCES

[1] Di Yan, Wei-Xing Wang, Lei Zuo, Member, IEEE and Xiao-Wei Zhang, ―Revisiting the Adjoint Matrix for FPGA Calculating the

Triangular Matrix Inversion‖, IEEE Transactions on Circuits and Systems II: Express Briefs, 2020.

[2] X.-W. Zhang, L. Zuo, M. Li and J.-X. Guo, ―High-throughput FPGA implementation of Matrix inversion for control systems,‖

Accepted by IEEE Trans. Ind. Electron., 2020.

[3] C. Zhang, et al,. ―On the low-complexity, hardware-friendly tridiagonal matrix inversion for correlated massive MIMO systems,‖

IEEE Trans. Vehic. Tech., vol. 68, no. 7, pp. 6272-6285, Jul. 2019.

[4] Y.-W. Xu, Y. Xi, J. Lan and T.-F. Jiang, ―An improved predictive controller on the FPGA by hardware matrix inversion,‖ IEEE

Trans. Ind. Electron., vol. 65, no. 9, pp. 7395–7405, Sep. 2018.

[5] Lakshmi kiran Mukkara and K.Venkata Ramanaiah, ―A Simple Novel Floating Point Matrix Multiplier VLSI Architecture for Digital

Image Compression Applications‖, 2nd International Conference on Inventive Communication and Computational Technologies

(ICICCT 2018).

[6] Soumya Havaldar, K S Gurumurthy, ―Design of Vedic IEEE 754 Floating Point Multiplier‖, IEEE International Conference On

Recent Trends In Electronics Information Communication Technology, May 20-21, 2016, India.

[7] Ragini Parte and Jitendra Jain, ―Analysis of Effects of using Exponent Adders in IEEE- 754 Multiplier by VHDL‖, 2015 International

Conference on Circuit, Power and Computing Technologies [ICCPCT] 978-1-4799-7074-2/15/$31.00 ©2015 IEEE.

[8] Ross Thompson and James E. Stine, ―An IEEE 754 Double-Precision Floating-Point Multiplier for Denormalized and Normalized

Floating-Point Numbers‖, International conference on IEEE 2015.

[9] M. K. Jaiswal and R. C. C. Cheung, ―High Performance FPGA Implementation of Double Precision Floating Point Adder/Subtractor‖,

in International Journal of Hybrid Information Technology, vol. 4, no. 4, (2011) October.

[10] B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating Point Arithmetic," IEEE Transactions on VLS1, vol. 2, no. 3,

pp. 365-367, 1994.

[11] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point Arithmetic on FPGA Based Custom Computing

Machines," Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM"95), pp.155-162, 1995.

[12] Malik and S. -B. Ko, ―A Study on the Floating-Point Adder in FPGAs‖, in Canadian Conference on Electrical and Computer

Engineering (CCECE-06), (2006) May, pp. 86–89.

[13] D. Sangwan and M. K. Yadav, ―Design and Implementation of Adder/Subtractor and Multiplication Units for Floating-Point

Arithmetic‖, in International Journal of Electronics Engineering, (2010), pp. 197-203.

[14] L. Louca, T. A. Cook and W. H. Johnson, ―Implementation of IEEE Single Precision Floating Point Addition and Multiplication on

FPGAs‖, Proceedings of 83rd IEEE Symposium on FPGAs for Custom Computing Machines (FCCM‟96), (1996), pp. 107–116.

[15] Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol. 2, (2001), pp. 897-900.

[16] Lee and N. Burgess, ―Parameterisable Floating-point Operations on FPGA‖, Conference Record of the Thirty-Sixth Asilomar

Conference on Signals, Systems, and Computers, (2002).

[17] M. Al-Ashrafy, A. Salem, W. Anis, ―An Efficient Implementation of Floating Point Multiplier‖, Saudi International Electronics,

Communications and Photonics Conference (SIECPC), (2011) April 24-26, pp. 1-5.

