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 Abstract— Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand of 

high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder 

performance. Matrix multiplication is the kernel operation used in many transform, image and discrete signal processing 

application. We develop new algorithms and new techniques for matrix multiplication on configurable devices. In this paper, we 

have proposed three designs for matrix-matrix multiplication. These design reduced hardware complexity, throughput rate and 

different input/output data format to match different application needs. In spite of complexity involved in floating point 

arithmetic, its implementation is increasing day by day.  Due to which high speed adder architecture become important. Several 

adder architecture designs have been developed to increase the efficiency of the adder. In this paper, we introduce an architecture 

that performs high speed IEEE 754 floating point multiplier using carry select adder (CSA). Here we are introduced two carry 

select based design. These designs are implementation Xilinx Vertex device family.   
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1. INTRODUCTION 

With the growth in scale of integration circuits, more and more sophisticated digital signal processing circuits are being 

implemented in (field programmable gate array) FPGA based circuit. Indeed, FPGA have become an attractive fabric for the 

implementation of computationally intensive application such as digital signal processing, image, graphics card and network 

processing tasks used in wireless communication. These complex signal processing circuits not only demand large computational 

capacity but also have high energy and area requirements. Though area and speed of operation remain the major design concerns, 

power consumption is also emerging as a critical factor for present VLSI system designers [1]-[4]. The need for low power VLSI 

design has two major motivations. First, with increase in operating frequency and processing capacity per chip, large current have 

to be delivered and the heat generated due to large power consumption has to be dissipated by proper cooling techniques, which 

account for additional system cost. Secondly, the exploding market of portable electronic appliances demands for complex circuits 

to be powered by lightweight batteries with long times between re-charges (for instance [5]. 

Another major implication of excess power consumption is that it limits integrating more transistors on a single chip or on a 

multiple-chip module. Unless power consumption is dramatically reduced, the resulting heat will limit the feasible packing and 

performance of VLSI circuits and systems. From the environmental viewpoint, the smaller the power dissipation of electronic 

systems, the lower heat pumped into the surrounding, the lower the electricity consumed and hence, lowers the impact on global 

environment [6]. 

Matrix multiplication is commonly used in most signal processing algorithms. It is also a frequently used kernel operation in a 

wide variety of graphics, image processing as well as robotic applications. The matrix multiplication operation involves a large 

number of multiplication as well as accumulation. Multipliers have large area, longer latency and consume considerable power 

compared to adders. Registers, which are required to store the intermediate product values, are also major power intensive 

component [7]. These components pose a major challenge for designing VLSI structures for large-order matrix multipliers with 

optimized speed and chip-area. However, area, speed and power are usually conflicting hardware constraints such that improving 

upon one factor degrades the other two. The real numbers represented in binary format are known as floating point numbers. 

Based on IEEE-754 standard, floating point formats are classified into binary and decimal interchange formats. Floating point 

multipliers are very important in dsp applications. This paper focuses on double precision normalized binary interchange format. 

Figure 1 shows the IEEE-754 double precision binary format representation. Sign (s) is represented with one bit, exponent (e) and 

fraction (m or mantissa) are represented with eleven and fifty two bits respectively.  
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II. DIFFERENT TYPES OF ADDER 

Parallel Adder:- 

Parallel adder can add all bits in parallel manner i.e. simultaneously hence increased the addition speed. In this adder multiple full adders are 

used to add the two corresponding bits of two binary numbers and carry bit of the previous adder. It produces sum bits and carry bit for the next 

stage adder. In this adder multiple carry produced by multiple adders are rippled, i.e. carry bit produced from an adder works as one of the input 

for the adder in its succeeding stage. Hence sometimes it is also known as Ripple Carry Adder (RCA). Generalized diagram of parallel adder is 

shown in figure 3. 

 

 
Figure 1: Parallel Adder (n=7 for SPFP and n=10 for DPFP)  

 
An n-bit parallel adder has one half adder and n-1full adders if the last carry bit required. But in 754 multiplier‘s exponent adder, last carry out 

does not required so we can use XOR Gate instead of using the last full adder. It not only reduces the area occupied by the circuit but also 

reduces the delay involved in calculation. For SPFP and DPFP multiplier‘s exponent adder, here we Simulate 8 bit and 11 bit parallel adders 

respectively as show in figure 4. 

 

 
Figure 2: Modified Parallel Adder (n=7 for SPFP and n=10 for DPFP)  

 

Carry Select Adder:- 

Carry select adder uses multiplexer along with RCAs in which the carry is used as a select input to choose the correct output sum bits as well as 

carry bit. Due to this, it is called Carry select adder. In this adder  two RCAs are used to calculate the sum bits simultaneously for the same bits 

assuming two different  carry inputs i.e. ‗1‘  and ‗0‘. It is the responsibility of multiplexer to choose correct output bits out of the two, once the 

correct carry input is known to it. Multiplexer delay is included in this adder. Generalized figure of Carry select adder is shown in figure 3.9. 

Adders are the basic building blocks of most of the ALUs (Arithmetic logic units) used in Digital signal processing and various other 

applications. Many types of adders are available in today‘s scenario and many more are developing day by day. Half adder and Full adder are 

the two basic types of adders. Almost all other adders are made with the different arrangements of these two basic adders only. Half adder is 

used to add two bits and produce sum and carry bits whereas full adder can add three bits simultaneously and produces sum and carry bits. 

 
 

Figure 3: Carry Select Adder 
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III. PROPOSED METHODOLOGY 

Proposed Parallel-Parallel Input and Multi Output(PPI-MO) 

In this design, we opted for faster operating speed by increasing the number of multipliers and registers performing the matrix 

multiplication operation. From equation 2 we have derived for parallel computation of 3 × 3 matrix-matrix multiplication and the 

structure is shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For an n×n matrix – matrix multiplication, the operation is performed using 
2n number of multipliers, 

2n  number of registers and 

nn 2
 number of adders. The registers are used to store the partial product results. Each of the 

2n  number of multipliers has 

one input from matrix B and the other input is obtained from a particular element of matrix A.  

The dataflow for matrix B is in row major order and is fed simultaneously to the particular row of multipliers such that the 
thi  

row of matrix B is simultaneously input to the 
thi  row of multipliers, where 1 < i < n . The elements of matrix are input to the 

multipliers such that, 
thij ),(  element of matrix A is input to  

The 
thji ),( multiplier, where1 < i,j < n. The resultant products from each column of multipliers are then added to give the 

elements of output matrix C. In one cycle, n elements of matrix C are calculated, so the entire matrix the elements of matrix C are 

obtained in column major order with n elements multiplication operation requires n cycles to complete. 

Let us consider the example of a 3×3 matrix – matrix multiplication operation, for a better analysis of the design (as shown in 

figure 1). The hardware complexities involved for this design are 9 multipliers, 9 registers and 6 adders. Elements from the first 

row of matrix B (b11 b12 b13) are input simultaneously to the first row of multipliers (M11 M12 M13) in 3 cycles. Similarly, elements 

from other two rows of matrix B are input to the rest two rows of multipliers. A single element from matrix A is input to each of 

the multipliers such that,  
thij ),(  element of matrix A is input to the multiplier Mij, where 1 < i,j < 3. The resultant partial 

products from each column of multipliers (M1k M2k M3k where 1 < k 3) are added up in the adder to output the elements of matrix 

C. In each cycle, one column of elements from matrix C is obtained (C1k C2k C3k where1 < k < 3) and so the entire matrix 

multiplication operation is completed in 3 cycles. 
 

Booth Multiplier 
There is no need to take the sign of the number into deliberation in dealing with unsigned multiplication. However in signed 
multiplication the process will be changed because the signed number is in a 2‘s compliment pattern which would give a wrong 
result if multiplied by using similar process for unsigned multiplication [6]. Booth‘s algorithm is used for this. Booth‘s algorithm 
preserves the sign of the result. Booth multiplication allows for smaller, faster multiplication circuits through encoding the signed 
numbers to 2‘s complement, which is also a standard technique used in chip design, [6] and provides significant improvements by 
reducing the number of partial product to half over ―long multiplication‖ techniques. Radix 2 is the conventional booth multiplier. 
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Figure 4: Proposed PPI – MO Design for n = 3 
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Radix 2  
In booth multiplication, partial product generation is done based on recoding scheme e.g. radix 2 encoding. Bits of multiplicand (Y) 
are grouped from left to right and corresponding operation on multiplier (X) is done in order to generate the partial product [19]. In 
radix-2 booth multiplication partial product generation is done based on encoding which is as given by Table1. Parallel Recoding 
scheme used in radix-2 booth multiplier is shown in the Table 1. 

 

Table 1: Booth recoding for radix 2 

 

Radix-4 

To further decrease the number of partial products, algorithms with higher radix value are used. In radix-4 algorithm grouping of 

multiplier bits is done in such a way that each group consists of 3 bits as mentioned in table 1. Similarly the next pair is the 

overlapping of the first pair in which MSB of the first pair will be the LSB of the second pair and other two bits. Number of 

groups formed is dependent on number of multiplier bits. By applying this algorithm, the number of partial product rows to be 

accumulated is reduced from n in radix-2 algorithm to n/2 in radix-4 algorithm. The grouping of multiplier bits for 8-bit of 

multiplication is shown in figure 5. 

 

 
Figure 5: Grouping of multiplier bits in Radix-4 Booth algorithm 

 

For 8-bit multiplier the number groups formed is four using radix-4 booth algorithm. Compared to radix-2 booth algorithm the 

number of partial products obtained in radix-4 booth algorithm is half because for 8-bit multiplier radix-2 algorithm produces 

eight partial products. The truth table and the respective operation is depicted in table 1. Similarly when radix-8 booth algorithm is 

applied to multiplier of 8-bits each group will consists of four bits and the number of groups formed is 3. For 8x8 multiplications, 

radix-4 uses four stages to compute the final product and radix-8 booth algorithm uses three stages to compute the product. In this 

thesis, radix-4 booth algorithm is used for 8x8 multiplication because number components used in radix-4 encoding style. 

 

Table 2: Truth Table for Radix-4 Booth algorithm 
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IV. SIMULATION RESULT 
All the designing and experiment regarding algorithm that we have mentioned in this paper is being developed on Xilinx 6.2i updated version. 

Xilinx 6.2i has couple of the striking features such as low memory requirement, fast debugging, and low cost. The latest release of ISETM 

(Integrated Software Environment) design tool provides the low memory requirement approximate 27 percentage low. ISE 6.2i that provides 

advanced tools like smart compile technology with better usage of their computing hardware provides faster timing closure and higher quality of 

results for a better time to designing solution. 
Table 3: Comparison Result 

 
 

Table 4: Simulation result for 3×3 and 4×4 Matrix Multiplication 

Structure Dimension Slice LUTs IOBs Delay (ns) 

Previous Design [1]  

 

3×3 

112 164 81 15.517 

MM using PPI-SO 44 15 34 11.222 

MM using PPI-MO 93 154 74 15.058 

MM using PFI-MO 34 55 38 9.128 

Previous Design [1]  

 

4×4 

248 412 96 17.227 

MM using PPI-SO 49 88 42 13.771 

MM using PPI-MO 221 388 74 15.058 

MM using PFI-MO 39 72 48 11.543 
 

V. CONCLUSION 

Most of the digital signal processing (DSP) algorithms is formulated as matrix-matrix multiplication, matrix-vector multiplication 

and vector-vector (Inner-product and outer-product) form. Few such algorithms are digital filtering, sinusoidal transforms, 

wavelet transform etc. The size of matrix multiplication or inner-product computation is usually large for various practical 

applications. On the other hand, most of these algorithms are currently implemented in hardware to meet the temporal requirement 

of real-time application [9]. When large size matrix multiplication or inner product computation is implemented in hardware, the 

design is resource intensive. It consumes large amount of chip area and power. With such a vast application domain, new designs 

are required to cater to the constraints of chip area and power and high speed. 
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IEEE754 standardize two basic formats for representing floating point numbers namely, single precision floating point and double 

precision floating point. Floating point arithmetic has vast applications in many areas like robotics and DSP. Delay provided and 

area required by hardware are the two key factors which are need to be consider Here we present single precision floating point 

multiplier by using two different adders namely modified  CSA with dual RCA and modified CSA with RCA and BEC. 
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