
ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 23

File Transfer in Matlab using FTP

1
Aravind.D,

2
Ishwarya Pandian

1,2
Department of Electronics and Communication Engineering

Kingston Engineering College,Vellore, Tamilnadu, India

Email: sharewitharavind@gmail.com

Abstract-The file transfer between persons can be accomplished

by the use of E-Mails, social networks or other external devices

such as pen drives, DVDs, CDs, memory cards, etc. The major

problem with this kind of file transfer is insecurity. The password

can be easily hacked by hackers. This problem can be overcome

by use of File Transfer Protocol (FTP) in MATLAB. File

Transfer Protocol (FTP) is a standard network protocol used to

transfer Web page files from their creator to the computer that

acts as their server for everyone on the Internet. It is also used to

download programs and other files to your computer from other

servers. This file transfer is made secure by the use of username

and password which is same for all clients using MATLAB.

I. INTRODUCTION

 The file transfer between computers plays a vital role in

modern technology. The goal is to transfer files using File

Transfer Protocol(FTP) in MATLAB. This file transfer can be

made secure by the use of username and password. File

Transfer Protocol (FTP) is a standard Internet protocol for

transmitting files between computers on the Internet.

A. Performing FTP file operations

 From MATLAB, one can connect to an FTP server to

perform remote file operations. The following procedure uses

a public Math Works FTP server (ftp.mathworks.com). To

perform any file operation on an FTP server, follow these

steps:

1. Connect to the server using the ftp function.

2. Perform file operations using appropriate

MATLAB FTP functions. For all operations, specify

the server object. For a complete list of functions.

3. When you finish working on the server, close the

connection object using the close function.

B. FTP Class

 Connect to an FTP server by calling the ftp function,

which creates an FTP object. Perform file operations using

methods on the FTP object, such as mput and mget. When

finish accessing the server, call the close method to close the

connection.

C. Construction

 f = ftp(host,username,password) connects to the FTP

server host and creates FTP object f. If the host supports

anonymous connections, one can use the host argument alone.

To specify an alternate port, separate it from host with a colon

(:).

D. Input Arguments

Host String enclosed in single

quotation marks that specifies the

FTP server.

Username String enclosed in single

quotation marks that specifies

your user name for the FTP

server.

Password String enclosed in single

quotation marks that specifies

your password for the FTP

server. Because FTP is not a

secure protocol, others can see

your user name and password.

II. MATLAB SOFTWARE

MATLAB is a high-performance language for technical

computing. It integrates computation, visualization, and

programming in an easy-to-use environment where problems

and solutions are expressed in familiar mathematical notation.

Typical uses include:

1. Math and computation

2. Algorithm development

3. Modeling, simulation, and prototyping

4. Data analysis, exploration, and visualization

5. Scientific and engineering graphics

6. Application development, including graphical user

interface building

MATLAB is an interactive system whose basic data

element is an array that does not require dimensioning. This

allows you to solve many technical computing problems,

especially those with matrix and vector formulations, in

a fraction of the time it would take to write a program in a

scalar noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory.

MATLAB was originally written to provide easy access to

ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 24

matrix software developed by the LINPACK and EISPACK

projects, which together represent the state-of-the-art in

software for matrix computation.

MATLAB has evolved over a period of years with input

from many users. In university environments, it is the standard

instructional tool for introductory and advanced courses in

mathematics, engineering, and science. In industry, MATLAB

is the tool of choice for high-productivity research,

development, and analysis.

MATLAB features a family of application-specific

solutions called toolboxes. Very important to most users of

MATLAB, toolboxes allow you to learn and apply specialized

technology. Toolboxes are comprehensive collections of

MATLAB functions (M-files) that extend the MATLAB

environment to solve particular classes of problems. Areas in

which toolboxes are available include signal processing,

control systems, neural networks, fuzzy logic, wavelets,

simulation, and many others.

A. About Simulink

 Simulink, a companion program to MATLAB, is an

interactive system for simulating nonlinear dynamic systems. It

is a graphical mouse-driven program that allows you to model

a system by drawing a block diagram on the screen and

manipulating it dynamically. It can work with linear, nonlinear,

continuous-time, discrete-time, multivariable, and multirate

systems.

Block sets are add-ins to Simulink that provide additional

libraries of blocks for specialized applications like

communications, signal processing, and power systems.

Real-time Workshop is a program that allows you to generate

C code from your block diagrams and to run it on a variety of

real-time systems.

B. About Toolboxes

 MATLAB features a family of application-specific

solutions called toolboxes. Very important to most users of

MATLAB, toolboxes allow you to learn and apply specialized

technology. Toolboxes are comprehensive collections of

MATLAB functions (M-files) that extend the MATLAB

environment in order to solve particular classes of problems.

Many toolboxes are available from The Math Works.

C. Exchanging Data Files Between Platforms
It’s sometimes necessary to work with MATLAB

implementations on different computer systems, or to transmit

MATLAB applications to users on other systems. MATLAB

applications consist of M-files, containing functions and

scripts, and MAT-files, containing binary data. Both types of

files can be transported directly between different computers:

1. M-files consist of ordinary text. They are machine

independent. While different platforms terminate

lines with various combinations of CR (carriage

return) and LF (line feed) characters, the MATLAB

interpreter tolerates all possible combinations.

(However, text editors and other tools may not work

correctly with M-files from other platforms.)

2. MAT-files are binary and machine dependent, but

they can be transported between machines because

they contain a machine signature in the file header.

MATLAB checks the signature when it loads a file

and, if a signature indicates that a file is foreign,

performs the necessary conversion. To use MATLAB

across different platforms, you need a program for

exchanging both binary and text data between the

machines. When using these programs, be sure to

transmit MAT-files in binary file mode and M-files in

ASCII file mode. Failure to set these modes correctly

usually corrupts the data.

D. MATLAB’s Memory Management

MATLAB uses the standard C functions malloc and free to

allocate dynamic memory. These routines maintain a pool of

memory that is allocated from the operating system relatively

slowly. malloc and free allocate memory from this pool for

MATLAB much more quickly. If the pool runs low, malloc

asks the operating system for another large chunk of memory

to replenish the pool. As MATLAB releases memory, the pool

can grow very large.

To maintain speed, malloc and free do not return the

additional memory to the operating system. These routines

make the assumption that if you need a large amount of

memory once, you will need it again. A side effect of this

algorithm is that, once MATLAB has used a certain amount of

memory, it is no longer available to other programs even if

MATLAB is no longer using it. The memory in the pool only

returns to the operating system when MATLAB terminates.

E. Editor/Debugger

The Editor/Debugger provides basic text editing

operations as well as access tovM-file debugging tools. The

Editor/Debugger offers a graphical user interface. It supports

automatic indenting and syntax highlighting.

To specify the default editor for MATLAB, select

Preferences from the File menu in the Command Window. On

the General page, select MATLAB’s Editor/Debugger or

specify another.

To start the Editor/Debugger, select New from the File

menu, or click the new file (page icon) button on the toolbar,

or type edit at the command line.

To start the Editor/Debugger, opening it to a particular

file, select Open from the File menu, or click the open file

(folder icon) button on the toolbar, or type edit filename at the

command line. Do not use the Editor/Debugger while you are

running an M-file in the Command Window or you will get an

error.

While running the Editor/Debugger without MATLAB

open, it becomes a pure text editor; one cannot use it as a

debugger. To use the debugger, launch the Editor/Debugger

from within MATLAB or with MATLAB open.

ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 25

F. Profiling

Profiling is a way to measure where a program spends its

time. Measuring is a much better method than guessing where

the most execution time is spent. One can probably deal with

obvious speed issues at design time and can then discover

unanticipated effects through measurement.

One key to effective coding is to create an original

implementation that is as simple as possible and then use a

profiler to identify bottlenecks if speed is an issue. Premature

optimization often increases code complexity unnecessarily

without providing a real gain in performance.

Use a profiler to identify functions that are consuming the

most time, then determine why you are calling them and look

for ways to minimize their use. It is often helpful to decide

whether the number of times a particular function is called is

reasonable. Because programs often have several layers, your

code may not explicitly call the most expensive functions.

Rather, functions within your code may be calling other, time-

consuming functions that can be several layers down in the

code. In this case it’s important to determine which of your

functions are responsible for such calls.

The profiler often helps to uncover problems that can

solve by:

1. Avoiding unnecessary computation, which can arise

from oversight.

2. Changing your algorithm to avoid costly functions.

3. Avoiding recomputation by storing results for future

use.

4. When the point is reached where most of the time is

spent on calls to a small number of built-in functions,

one can probably optimized the code as much as

expected.

G. Data Types

There are six fundamental data types (classes) in

MATLAB, each one a multidimensional array. The six classes

are double, char, sparse, storage, cell, and struct. The two-

dimensional versions of these arrays are called matrices and

are where MATLAB gets its name.

One will probably spend most of the time working with

only two of these data types: the double precision matrix

(double) and the character array (char) or string. This is because

all computations are done in double-precision and most

of the functions in MATLAB work with arrays of double-

precision numbers or strings.

The other data types are for specialized situations like

image processing,sparse matrices (sparse), and large scale

programming (cell and struct).

One can’t create variables with the types numeric, array, or

storage. These virtual types serve only to group together types

that share some common attributes. The storage data types are

for memory efficient storage only.

One can apply basic operations such as subscripting and

reshaping to these types of arrays but they can’t perform any

math with them. One must convert such arrays to double via

the double function before doing any math operations.

One can define user classes and objects in MATLAB that

are based on the struct data type.

H. Matrices in MATLAB
Informally, the terms matrix and array are often used

interchangeably. More precisely, a matrix is a two-dimensional

rectangular array of real or complex numbers that represents a

linear transformation.

The linear algebraic operations defined on matrices have

found applications in a wide variety of technical fields. (The

Symbolic Math Toolboxes extend MATLAB’s capabilities

to operations on various types of nonnumeric matrices.)

MATLAB has dozens of functions that create different

kinds of matrices. Two of them can be used to create a pair of

3-by-3 example matrices for use throughout this chapter.

The first example is symmetric.
A = pascal(3)

A =

1 1 1

1 2 3

1 3 6

The second example is not symmetric.
B = magic(3)

B =

8 1 6

3 5 7

4 9 2

Another example is a 3-by-2 rectangular matrix of random

integers.
C = fix(10*rand(3,2))

C =

9 4

2 8

6 7

A column vector is an m-by-1 matrix, a row vector is a 1-

by-n matrix and a scalar is a 1-by-1 matrix. The statements
u = [3; 1; 4]

v = [2 0 —1]

s = 7

produce a column vector, a row vector, and a scalar.
u =

3

1

4

v =

2 0 —1

s =

7

I. LU, QR, and Cholesky Factorizations

MATLAB’s linear equation capabilities are based on three

basic matrix factorizations.

1. Cholesky factorization for symmetric, positive

definite matrices

2. Gaussian elimination for general square matrices

ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 26

3. Orthogonalization for rectangular matrices. These

three factorizations are available through the chol, lu,

and qr functions.

All three of these factorizations make use of triangular

matrices where all the elements either above or below the

diagonal are zero. Systems of linear equations involving

triangular matrices are easily and quickly solved using

either forward or back substitution.

III. BROWSERS
A. System Browser

The system browser that MATLAB uses depends on your

platform:

1. On Microsoft Windows and Apple Macintosh

platforms, MATLAB uses the default browser for

your operating system.

2. On UNIX

 platforms, MATLAB uses the Mozilla

Firefox browser. You can specify a different system

browser for MATLAB using Web preferences.

B. Display Pages in Web Browsers

To display an HTML document in the MATLAB Web

browser, double-click the document name in the Current

Folder browser.

To display a Web page or any file type in the MATLAB

Web browser:

1. Open the browser using the web command.

2. Type a URL or full path to a filename in

the Location field.

IV. MATLAB SERVER SESSION

The MATLAB server session creates a data set to be

transferred out, opens a TCP/IP server socket and waits for the

client to connect to it. When the connection is established, the

data is written out to the socket.

Prepare the data we want to send over to the client

MATLAB session. In this case our data is created by a call to

the membrane function.

data = membrane(1);

Let us list details of the data set we want to transfer. We

will use this information later to set up some parameters on the

server socket and in the client.

s = whos('data')

s =

 name: 'data'

 size: [31 31]

 bytes: 7688

 class: 'double'

 global: 0

 sparse: 0

 complex: 0

 nesting: [1x1 struct]

 persistent: 0

Get the dimensions of the data array we will be transferring.

s.size

ans =

 31 31

Get the number of bytes of data we will be transferring.

s.bytes

ans =

 7688

Start a TCP/IP server socket in MATLAB. By setting the

IP address to '0.0.0.0' the server socket will accept connections

on the specified port (arbitrarily chosen to be 55000 in our

case) from any IP address. You can restrict the TCP/IP server

socket to only accept incoming connections from a specific IP

address by explicitly specifying the IP address. Note the new

property NetworkRole.

tcpipServer = tcpip('0.0.0.0',55000,'NetworkRole','Server');

Set the OutputBufferSize property to a value large enough

to hold the data. This is the first place where we use the output

of the whos function, specifically the value of s.bytes.

set(tcpipServer,'OutputBufferSize',s.bytes);

Open the server socket and wait indefinitely for a

connection. This line will cause MATLAB to wait until an

incoming connection is established.

fopen(tcpipServer);

Since the MATLAB server code is running in a separate

MATLAB session than the client, you may notice the

Busy status next to the MATLAB Start Button in the server

session until the following commands have been executed.

You may stop the MATLAB server socket creation and break

out of this busy state by using the Control-C key combination

to close the server socket. Note that once you close the server

socket clients will no longer be able to connect to it until it has

been re-opened.

Once the connection is made by the client, write the data

out and close the server.

fwrite(tcpipServer,data(:),'double');

fclose(tcpipServer);

ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 27

V. MATLAB CLIENT SESSION
The MATLAB server session is running on a computer

with a known IP address or hostname. In this case, this is the

address '127.0.0.1'. The second MATLAB session that acts as

the client application creates a TCP/IP client, connects to the

server and retrieves the data. Once retrieved, the data will be

visualized in the client session.

Create a MATLAB client connection to MATLAB server

socket. Note the value of the NetworkRole property on the

client. Also note that the port number of the client matches that

selected for the server.

tcpipClient = tcpip('127.0.0.1',55000,'NetworkRole','Client')

 TCPIP Object : TCPIP-127.0.0.1

Communication Settings

 RemotePort: 55000

 RemoteHost: 127.0.0.1

 Terminator: 'LF'

 NetworkRole: client

 Communication State

 Status: closed

 RecordStatus: off

Read/Write State

 TransferStatus: idle

 BytesAvailable: 0

 ValuesReceived: 0

 ValuesSent: 0

Set the InputBufferSize property so we have sufficient

room to hold the data that will be sent to us by the server. The

number 7688 is the number of bytes in the data array. For

more general purpose code, you can parametrize this code by

using the value in s.bytes instead of the hard-coded value of

7688.

set(tcpipClient,'InputBufferSize',7688);

I will define a long value for the Timeout; the waiting time

for any read or write operation to complete. Adjust this value

to ensure that any data that is being transferred to the client

will be read back within the selected timeout.

set(tcpipClient,'Timeout',30);

Open a TCPIP connection to the server.

fopen(tcpipClient);

Read the data that is being written out on the server. Note

that the data types need to be matched up on the client and

server. The number of double values to be read back from the

server socket is 961. For more general purpose code, you may

parametrize the second argument using prod(s.size), for

example.

rawData = fread(tcpipClient,961,'double');

Close the connection to the server once we've retrieved the

data.

fclose(tcpipClient);

VI. MATLAB CODINGS

close all;

clear all;

clc;

% FTP Create an FTP object.

%FTP(host,username,password) returns an FTP object.

f =ftp('162.202.67.157','bensingh','revolution');

%DISP Display array.

% DISP(X) displays the array, without printing the array

name.

 disp(f);

%MPUT Upload to an FTP site.

% MPUT(FTP,FILENAME (or) DIRECTORY) uploads a file.

paths = mput(f,'E:\Magesh\GPS\screencapture.m');

 %MGET Download from an FTP site.

% MGET(FTP,FILENAME (or) DIRECTORY) downloads a

file.

mget(f,'tcp.c');

close(f);

ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 28

VI. PICTORIAL PROCEDURE

A. Step 1

Fig.1. Enter the codings in the MATLAB Editor Window

B. Step 2

Fig.2. Address bar showing the IP address

C. Step 3

Fig.3. Log on with the user name and password

D. Step 4

Fig.4. Files that are transferred can be accessed

ISSN:2321-7529(Online)|ISSN:2321-7510 (Print) International Journal of Research & Technology, Volume 1, Issue 3

www.ijrt.org 29

CONCLUSION

 The files that are uploaded in the MATLAB server session

can be accessed by the client through FTP protocol with the

help of Internet. The uploading of files requires a MATLAB

platform but the accessing of files doesn’t require it. The file

transfer can be made secure by the use of user name and

password which is common for all users. In the same way, the

files which are uploaded by the client can also be accessed by

the server over the Internet.

REFERENCES

[1] http://www.google.com/

[2] MATLAB 2010 software

[3] http://www.mathwork.com/help/

[4] Using MATLAB Version 5

COPYRIGHT 1984 - 1999 by The Math Works, Inc.

[5] MATLAB Data Analysis COPYRIGHT 2005 2013 by The Math

 Works, Inc.

