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Abstract 

Partial Differential Equations (PDEs) have become a 

cornerstone of modern image processing, offering a 

mathematically rigorous and physically inspired 

framework for solving a wide range of imaging 

problems. This review explores the development and 

applications of PDE-based methods, tracing their 

evolution from classical linear diffusion models to 

advanced nonlinear and variational formulations. 

PDEs provide a unified approach to fundamental tasks 

such as edge detection, denoising, deblurring, 

segmentation, and inpainting, enabling the 

preservation of critical structures while reducing noise 

and distortions. Notable contributions, including 

anisotropic diffusion (Perona–Malik) for selective 

smoothing and the Rudin–Osher–Fatemi (ROF) 

model for total variation minimization, highlight the 

effectiveness of PDEs in balancing clarity and detail 

preservation. Beyond restoration and edge 

enhancement, PDEs have been extended to higher-

level tasks such as multiscale analysis, optical flow 

estimation, and texture reconstruction, demonstrating 

their versatility across diverse domains including 

medical imaging, remote sensing, cultural heritage 

preservation, and computer vision. While 

computational complexity and parameter sensitivity 

remain limitations, PDE-based methods retain unique 

strengths in interpretability and robustness, especially 

in scenarios with limited or  

noisy data. Furthermore, recent research emphasizes 

hybrid approaches that integrate PDE formulations with 

deep learning, combining the interpretability of PDEs 

with the adaptability of data-driven models. This review 

highlights the enduring significance of PDEs in 

advancing image processing theory and practice, while 

pointing toward future directions where mathematical 

rigor and modern computational techniques converge. 
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Introduction 

Partial Differential Equations (PDEs) have established 

themselves as a powerful mathematical framework in the 

field of image processing, offering a systematic and 

theoretically grounded approach to solving complex 

visual problems. Unlike conventional filtering or 

statistical methods, PDE-based models treat images as 

continuous surfaces, allowing the evolution of pixel 

intensities to be described through differential operators. 

This formulation enables the capture of both local and 

global features, making PDEs particularly effective in 

tasks such as edge detection, smoothing, segmentation, 

and image restoration. Early breakthroughs like the 

Perona–Malik anisotropic diffusion model demonstrated 

how PDEs could reduce noise while preserving important 

edge structures, addressing one of the fundamental 

challenges in image analysis. Similarly, variational 
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approaches rooted in PDEs have enabled flexible 

multiscale representations, allowing images to be 

processed at different levels of abstraction without 

compromising structural integrity. These 

contributions highlight the unique capacity of PDEs to 

not only detect fine edges but also model geometric 

structures, which has made them indispensable in 

domains ranging from medical imaging and industrial 

inspection to satellite image interpretation and real-

time computer vision applications. 

Beyond edge detection, PDEs have been widely 

applied to image restoration, where the objective is to 

reconstruct high-quality images from corrupted, 

noisy, or incomplete data. Linear and nonlinear 

diffusion-based models, inspired by physical 

processes such as heat flow, have been used to smooth 

homogeneous regions while retaining crucial features 

like boundaries and textures. More advanced 

formulations, such as the Rudin–Osher–Fatemi (ROF) 

model, have introduced total variation minimization 

techniques that balance noise suppression with detail 

preservation, significantly improving the visual 

quality of restored images. PDEs have also proven 

effective in image inpainting, where missing or 

damaged regions are reconstructed by propagating 

structural and textural information from surrounding 

areas in a visually coherent manner. These methods 

have found applications not only in technical fields but 

also in cultural heritage preservation, where damaged 

artworks and photographs are digitally restored. The 

versatility of PDEs, spanning from edge detection to 

restoration and beyond, underscores their role as both 

a theoretical foundation and a practical toolset for 

advancing image processing. By providing a unifying 

framework that integrates geometry, physics, and 

computation, PDEs continue to shape modern approaches 

to digital imaging, ensuring their relevance in both 

academic research and real-world applications. 

Motivation and Scope of the Review 

Image processing has become an indispensable tool in a 

wide range of applications, from medical diagnostics and 

satellite imaging to surveillance, cultural heritage 

preservation, and everyday digital photography. The 

demand for high-quality image analysis, restoration, and 

interpretation continues to grow as imaging technologies 

generate increasingly complex and high-resolution data. 

Traditional image processing techniques, such as linear 

filtering, Fourier transforms, and gradient-based edge 

detectors, often perform well under ideal conditions but 

tend to struggle when confronted with noise, blurring, or 

missing data. This limitation has motivated researchers to 

explore more mathematically rigorous frameworks 

capable of handling these challenges while preserving the 

structural and geometric features that are crucial for 

meaningful interpretation. Partial Differential Equations 

(PDEs) have emerged as one such framework, offering a 

unified mathematical approach to address tasks such as 

edge detection, denoising, deblurring, segmentation, and 

inpainting. The scope of this review is to provide a 

comprehensive understanding of how PDE-based 

methods have been developed and applied in image 

processing, analyzing their strengths, limitations, and 

evolving role in comparison to emerging paradigms like 

machine learning and deep learning. By covering both 

foundational concepts and advanced models, this review 

aims to serve as a valuable resource for researchers, 

students, and practitioners interested in the intersection of 

mathematics and digital imaging. 

Evolution of PDEs in Image Processing 
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The use of PDEs in image processing has evolved 

significantly over the past few decades, reflecting both 

advances in mathematical modeling and the growing 

complexity of real-world imaging tasks. The early 

applications of PDEs can be traced back to the 

adaptation of classical diffusion equations, where 

images were treated analogously to physical systems 

subject to processes like heat conduction. Linear 

diffusion models were initially applied for image 

smoothing and noise reduction, but these approaches 

often blurred edges along with unwanted noise. A 

breakthrough came in 1990 with the introduction of 

anisotropic diffusion by Perona and Malik, which 

allowed selective smoothing by adapting the diffusion 

process to local image gradients, thereby preserving 

sharp boundaries while reducing noise in 

homogeneous regions. This innovation paved the way 

for a variety of nonlinear PDE models designed to 

enhance edges, preserve textures, and reconstruct 

missing information. Subsequent developments 

included variational models such as the Rudin–Osher–

Fatemi (ROF) model, which applied total variation 

minimization for image denoising and became a 

cornerstone in PDE-based restoration techniques. 

Later, PDEs were extended to address more complex 

problems like image segmentation through the 

Mumford–Shah model and motion estimation using 

hyperbolic PDE formulations. Over time, the field has 

witnessed a shift toward integrating PDE frameworks 

with computational advances, enabling faster 

algorithms and hybrid approaches that combine PDEs 

with machine learning. This evolutionary trajectory 

underscores the adaptability and enduring relevance 

of PDEs in image processing, from their classical 

origins in diffusion theory to their modern role in 

shaping hybrid and data-driven imaging solutions. 

Mathematical Foundations of PDEs in Imaging 

Basic Concepts of PDEs 

Partial Differential Equations (PDEs) are mathematical 

equations that describe how a quantity changes with 

respect to multiple independent variables, often space and 

time. In general, a PDE involves an unknown function 

and its partial derivatives. Unlike Ordinary Differential 

Equations (ODEs), which involve only one variable, 

PDEs allow the modeling of complex phenomena that 

evolve in multidimensional spaces. In image processing, 

PDEs play a key role because images can be naturally 

represented as two-dimensional signals, where pixel 

intensities vary across spatial coordinates (𝑥, 𝑦). A 

grayscale image, for instance, can be represented as a 

function 𝐼(𝑥, 𝑦), and PDEs provide a framework to 

describe how this intensity function evolves under certain 

operations such as smoothing, sharpening, or diffusion. 

One of the most important reasons PDEs are used in 

image processing is their connection to physical 

analogies. For example, the heat equation, 

 

where 𝛥 denotes the Laplacian operator, models the 

diffusion of heat in a medium. Applied to images, it 

describes how intensity values spread over time, 

effectively reducing noise while maintaining an overall 

smooth structure. Similarly, wave equations can be used 

to model the propagation of intensity changes, aiding in 

tasks like edge detection. These physical interpretations 

make PDEs not only mathematically rigorous but also 

intuitive for practical applications. 

Classification: Elliptic, Parabolic, and Hyperbolic 

Equations 
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PDEs are generally classified into three main types—

elliptic, parabolic, and hyperbolic—depending on 

their mathematical structure and the type of 

phenomena they represent. 

• Elliptic PDEs: These describe steady-state 

problems where the solution does not evolve 

over time. A common example is Laplace’s 

equation: 

 

In image processing, elliptic equations are frequently 

used in image inpainting, where missing or corrupted 

regions are filled by smoothly interpolating values 

from the surrounding pixels. The steady-state nature 

of elliptic PDEs ensures that the solution is smooth 

and globally consistent across the domain. 

Parabolic PDEs: These equations model diffusion-

like processes where the solution evolves gradually 

over time toward a steady state. The heat equation is 

the most classical parabolic PDE and is widely used 

for denoising images. By applying diffusion 

iteratively, noise is smoothed out while larger 

structures are preserved. Nonlinear parabolic PDEs, 

such as anisotropic diffusion, improve upon this by 

adapting the diffusion process according to local 

gradients, preventing edges from being blurred. 

Hyperbolic PDEs: These represent wave-like 

phenomena characterized by propagation and 

oscillation. A standard example is the wave equation: 

 

where c is the propagation speed. In image 

processing, hyperbolic PDEs are useful for edge 

detection and motion analysis, as they allow sharp 

transitions (edges) to be propagated across the image 

without excessive smoothing. 

 

The classification highlights how different types of PDEs 

serve distinct purposes in image analysis—elliptic for 

interpolation, parabolic for smoothing and restoration, 

and hyperbolic for capturing sharp transitions and 

dynamic changes. 

Image as a Continuous Function and PDE 

Formulation 

Although digital images are inherently discrete, 

composed of pixels on a grid, they can be effectively 

modeled as continuous functions for mathematical 

analysis. Representing an image as a function 𝐼(𝑥, 𝑦), 

where (𝑥, 𝑦) are spatial coordinates and 𝐼 denotes 

intensity, enables the application of PDEs to describe 

changes in intensity values across the domain. PDE-

based formulations typically introduce an artificial time 

variable 𝑡, where the image evolves according to a 

specific PDE until a desirable steady state is reached. 

For instance, consider the isotropic diffusion (heat 

equation) applied to an image: 

 

Here, as 𝑡 increases, the image becomes progressively 

smoother. To avoid over-smoothing important details 

like edges, nonlinear PDEs such as the Perona–Malik 

anisotropic diffusion equation were introduced: 

 

 

where the diffusion coefficient 𝑐(∣ 𝛻𝐼 ∣) decreases in 

regions of high gradient magnitude (edges), thus 

preserving boundaries while reducing noise in flat 

regions. Similarly, variational formulations of PDEs treat 

image restoration as an optimization problem, where the 
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solution minimizes an energy functional subject to 

PDE constraints. 

This continuous formulation provides a bridge 

between mathematical modeling and practical image 

analysis. It enables a unified view where denoising, 

deblurring, edge detection, and inpainting are all 

governed by PDE evolution, ensuring both theoretical 

consistency and practical flexibility. 

 

 

 

Literature Review   

Liu, P., Huang, F., Li, G., et al (2011). Remote 

sensing images often suffer from noise due to various 

factors such as atmospheric conditions, sensor 

limitations, and environmental interferences, which 

can significantly affect the accuracy of subsequent 

analyses. Denoising these images is crucial for 

extracting meaningful information and enhancing the 

quality of data interpretation. One effective approach 

for remote sensing image denoising is the use of 

partial differential equations (PDEs), which can model 

the spatial characteristics of the image while 

effectively preserving its essential features. By 

formulating a PDE-based model, we can apply 

diffusion processes that selectively smooth regions of 

the image while maintaining sharp edges, thus 

preventing the blurring of critical details.  

Boujena, S., Bellaj, K., et al (2015). Image inpainting 

is a critical technique in computer vision and image 

processing, aimed at reconstructing missing or 

corrupted parts of an image. Traditional methods often 

rely on linear models, which may not adequately 

capture the complexities and nonlinearities inherent in 

real-world images. To address these limitations, an 

improved nonlinear model for image inpainting is 

proposed, leveraging advanced mathematical 

frameworks to enhance reconstruction accuracy. This 

model utilizes nonlinear partial differential equations 

(PDEs) that are adept at modeling the intricate structures 

and textures found in natural images. By integrating 

information from surrounding pixels, the model 

effectively fills in gaps while preserving essential 

features such as edges and textures.  

Stark, H. (Ed.). (2013). Image recovery is a crucial 

aspect of image processing that aims to restore or 

reconstruct images that have been degraded due to 

various factors such as noise, blur, or loss of data. The 

theory behind image recovery encompasses a range of 

mathematical and computational techniques, including 

statistical modeling, optimization, and machine learning. 

Fundamental approaches often involve formulating the 

recovery process as an inverse problem, where the goal is 

to estimate the original image from observed, degraded 

data. Techniques such as regularization are employed to 

impose constraints that guide the recovery process, 

helping to mitigate issues like noise amplification and 

ensuring the preservation of critical features.  

Bavirisetti, D. P., Xiao, G., et al (2017). Multi-sensor 

image fusion is an advanced technique that integrates 

information from multiple sensors to produce a more 

comprehensive and high-quality image than what any 

single sensor could achieve. This process is particularly 

valuable in applications such as remote sensing, medical 

imaging, and surveillance, where varying sensor 

modalities may capture different aspects of the same 

scene. One promising approach to multi-sensor image 

fusion is based on fourth-order partial differential 

equations (PDEs), which offer a robust mathematical 

framework for modeling image characteristics and 

interrelationships among different sensor data. Fourth-

order PDEs are capable of preserving intricate details, 
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such as edges and textures, while effectively reducing 

noise and enhancing overall image quality. By 

formulating the fusion process using these equations, 

the algorithm can simultaneously account for the high-

frequency components from various sensors and 

ensure that important features remain intact. 

Chen, Y., & Pock, T. (2016). Trainable nonlinear 

reaction-diffusion models represent a sophisticated 

approach in image processing and computer vision, 

particularly for tasks involving image segmentation, 

denoising, and enhancement. These models combine 

the principles of nonlinear reaction-diffusion 

equations with machine learning techniques to create 

adaptive systems capable of learning from data. The 

nonlinear reaction-diffusion framework inherently 

incorporates mechanisms for smoothing and edge 

preservation, making it effective in handling images 

with varying characteristics. By embedding trainable 

parameters within the diffusion process, the model can 

be fine-tuned to optimize performance based on 

specific datasets or applications.  

Lefkimmiatis, S., Bourquard, A., et al (2011). 

Hessian-based norm regularization is an innovative 

technique utilized in image restoration, particularly 

within the biomedical field, where high-quality 

images are crucial for accurate diagnosis and 

treatment planning. This method leverages the 

Hessian matrix, which contains second-order 

derivatives of the image intensity, to assess and 

control the image structure and texture during the 

restoration process. By incorporating Hessian-based 

regularization, the algorithm effectively balances 

fidelity to the observed data and the smoothness of the 

restored image, thus reducing artifacts and enhancing 

important features such as edges and contours. In 

biomedical applications, such as MRI or CT imaging, 

the quality of reconstructed images can significantly 

influence clinical outcomes.  

Research Problem  

The research problem addressed in this study focuses on 

the limitations and challenges associated with traditional 

image processing techniques, particularly in the context 

of edge detection and image restoration. Despite 

significant advancements in digital imaging 

technologies, many existing methods struggle to 

effectively manage issues such as noise, blur, and loss of 

important features, which can lead to suboptimal 

outcomes in various applications. Traditional approaches 

often rely on linear models that may not adequately 

capture the complex and nonlinear nature of real-world 

images. This limitation can result in poor performance 

when dealing with diverse datasets that exhibit varying 

characteristics. Furthermore, conventional algorithms 

frequently fail to leverage the rich mathematical 

frameworks provided by Partial Differential Equations 

(PDEs), which have the potential to model the underlying 

physical processes affecting image quality. This study 

seeks to investigate how PDE-based methods can address 

these shortcomings by offering a more robust framework 

for image processing. By formulating edge detection and 

image restoration as optimization problems guided by 

PDEs, the research aims to enhance the performance and 

accuracy of these techniques. The central research 

problem, therefore, revolves around exploring the 

effectiveness of PDEs in overcoming the inherent 

limitations of traditional image processing methods and 

identifying their potential for improved outcomes in real-

world applications. 

Conclusion 

The study of Partial Differential Equations (PDEs) in 

image processing demonstrates how mathematical 

modeling can provide elegant and effective solutions to 
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complex visual tasks. From early diffusion-based 

approaches to advanced nonlinear and variational 

formulations, PDEs have played a transformative role 

in addressing fundamental problems such as edge 

detection, denoising, deblurring, segmentation, and 

inpainting. Their strength lies in their ability to mimic 

physical processes, offering methods that are not only 

mathematically rigorous but also intuitively connected 

to real-world phenomena such as heat diffusion, wave 

propagation, and surface evolution. This 

interpretability distinguishes PDEs from purely data-

driven methods, giving them a lasting relevance in 

theoretical and applied research. At the same time, the 

evolution of PDE-based models highlights both their 

versatility and limitations: while highly effective in 

preserving structures and enhancing clarity, they often 

require intensive computation and careful parameter 

tuning. Recent advances show a promising trend 

toward hybrid approaches, where PDEs are combined 

with machine learning and deep learning frameworks 

to exploit the interpretability of PDEs alongside the 

adaptability of data-driven models. Such synergies are 

shaping a new generation of algorithms capable of 

handling large-scale, high-dimensional, and real-time 

imaging challenges. Ultimately, PDEs remain a 

cornerstone of image processing research, offering not 

just tools for edge detection and restoration but a 

unifying framework that continues to inspire 

innovation and bridge the gap between mathematical 

theory and practical imaging applications. 
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