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Abstract—Most distributed estimation algorithms have 

traditionally been designed for stable systems such as Finite 

Impulse Response (FIR) systems. However, recognizing that real-

world systems are not always stable, this paper proposes 

distributed estimation for Infinite Impulse Response (IIR) 

systems. It focuses on diffusion-based cooperation among 

adaptive nodes, which is crucial for handling system instability. 

This approach ensures adaptability to changes in network 

topology, maintaining good performance even in the face of link 

and node failures. Simulation results demonstrate that the 

proposed IIR DPSO (Infinite Impulse Response diffusion particle 

swarm optimization) algorithm achieves comparable Mean 

Square Error (MSE) to the conventional IIR ILMS (Infinite 

Impulse Response Incremental least mean square) algorithm. 

Moreover, the proposed algorithm exhibits robustness to link 

failures, making it suitable for large-scale networks and 

adaptable to changing network configurations. 
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I. INTRODUCTION 

In recent years, the distributed estimation of parameters has 
garnered significant attention among researchers, largely driven 
by the extensive utilization of wireless sensor networks 
(WSNs). These networks find application in various fields such 
as environmental monitoring (e.g., temperature, sound, 
humidity, pollution, and vibration monitoring), battlefield 
surveillance, health care, and home automation [1]. Sensor 
nodes within WSNs typically possess limited processing 
capabilities and rely on small batteries for power. 
Consequently, there is a pressing need to devise methods that 
consume minimal power and communication resources for 
processing observed data [2]. In practical scenarios, a group of 
nodes is deployed across a geographical area to capture raw 
observations and estimate specific parameters of interest amidst 
noisy environments. Traditional centralized parameter 
estimation methods entail significant communication overhead 
to relay data to a fusion center, consequently diminishing the 
overall network lifespan rapidly. 

To adapt to changes in the environment, various techniques 
for distributed parameter estimations have been proposed [3-4]. 
In these approaches, each sensor independently estimates local 
parameters and then shares these estimates with neighboring 

nodes to collectively estimate global parameters. Cooperation 
among nodes is facilitated through two strategies: Incremental 
and Diffusion [5]. In the Incremental strategy [6], nodes 
cyclically update their local weights based on data collected 
from themselves and immediate neighbors. This approach 
necessitates a predefined incremental path connecting all 
sensors in the environment, making it suitable for small 
networks with minimal inter-node communication. Conversely, 
the Diffusion strategy [7], depicted in Fig.1, involves 
estimating a node's weight by aggregating the estimated 
weights of its neighboring subset Nk, along with the data Xk(i) 
observed by the node. This estimated value is then shared with 
neighboring nodes. The Diffusion mode allows each node 
access to a greater number of neighbors, enabling it to adapt to 
changes in network topology and perform more effectively in 
larger networks compared to the Incremental mode[8]-[9]. 

This research paper is focus to the implementation of 
Diffusion Particle Swarm Optimization (PSO) tailored 
specifically for Infinite Impulse Response (IIR) systems with 
the objective of accurately estimating the parameters associated 
with each individual sensor node. Particle Swarm Optimization 
(PSO) is an extensively utilized metaheuristic optimization 
algorithm that draws inspiration from the collective behavior 
observed in natural phenomena such as bird flocking or fish 

 
Fig.1: Architecture of Wireless Sensor Node 
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schooling. Within the framework of PSO, a diverse population 
of candidate solutions, denoted as particles, navigates through 
the solution space in pursuit of the optimal solution. Each 
particle dynamically adjusts its position and velocity based not 
only on its individual experiences but also on the collective 
experiences shared among its neighboring particles. 
Consequently, this collaborative adaptation mechanism enables 
particles to converge towards solutions that approximate the 
global optimum, all while maintaining computational 
efficiency.  

 

Fig.2: Diffusion Strategy for Mode of Cooperation between the nodes 

 
However, it is noteworthy that the majority of existing 

optimization algorithms are primarily designed for stable 
systems such as Finite Impulse Response (FIR). In 
acknowledgment of the prevalence of real-world systems 
characterized by instability, we propose the development of an 
algorithm explicitly tailored to address the distinct challenges 
encountered in IIR systems. This tailored approach is 
anticipated to enhance the applicability and effectiveness of 
optimization techniques in practical scenarios characterized by 
the presence of unstable dynamics [10]-[13]. 

The structure of the work is outlined as follows. Section 2 

outlines the formulation of the estimation problem utilizing a 

distributed strategy. Section 3 presents distributed estimation 

for IIR systems under incremental cooperation. Recognizing 

the limitations of incremental cooperation, we introduce 

diffusion PSO for distributed estimation of IIR systems in 

Section 4. In Section 5, we conduct a simulation study on two 

IIR systems under various noise conditions and compare the 

results with those obtained by IIR ILMS. Finally, Section 6 

provides the conclusion of our proposed algorithm. 

A. Problem Formulation 

Let's consider a sensor network comprising 'K' nodes 
deployed across various environments. The data gathered by 
the kth node is denoted as k=[1,2,3……….K][15]. Each 
sensor's collected data is subject to noise nak(i), assumed to 
follow a uniformly distributed white Gaussian distribution. The 
input data vector, Xk(i), is independent of the noise. In this 
context, each sensor node functions as an IIR plant, and the 
output of the k-th IIR plant is characterized by an equation. The 
input data vector, denoted as Xk(i), is uncorrelated with the 
noise. Each sensor node is treated as an IIR plant, and the 
output of the k-th IIR plant is described by equation [11]. 

 
0 1

( ) * ( ) * ( ) ( )
Q P

k q k p k k

q p

y i a X i q b y i p na i
 

       (1) 

The primary aim is to determine the global parameters of 
interest w

0 
(i.e. [a0a1…aQb1b2…bP]) linked with the data 

captured by the sensor node[16]. These parameters can be 
computed using either centralized or distributed 
methodologies. The zeros and poles of the IIR plant are 
represented by aq(0≤q≤Q) and bp(0≤p≤P), respectively. 

For the purpose of identifying distributed systems, we 
consider the model depicted in Figure 2. At the kth node, the 
output can be represented by the equation described in 
reference [12]. 
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Where feed forward and feedback transfer function of K
th
 

instant of Âk(i,z) and Bk(i,z) are represented by 
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The expression for the output of the IIR system model at the 

sensor node is as follows: 
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The error at the k
th
 sensor node is calculated by subtracting 

the desired filter output yk(i) from the model filter output ŷk(i) 
expressed as: 

 ( ) ( ) ( )k k ki y i y i    (6) 

The optimal weight vector, comprising both the coefficients 
of the forward filter path and the feedback filter path, can be 
estimated by minimizing the cost function [13]. 
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II. DIFFUSION PSO FOR IIR SYSTEM IDENTIFICATION

  

The diffusion strategy employed for distributed estimation 
of parameters in an Infinite Impulse Response (IIR) system 
does not necessitate the establishment of any cyclic paths 
among sensor nodes to facilitate parameter estimation[17]-[21]. 
This approach operates effectively through a proposed two-step 
process specifically tailored for this purpose. 

Step 1:  
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   In this context, Nk represents the set of neighboring nodes 
that are directly connected to a specific node i.e (i=1,2…NK). 
step 1 involve at any given time i-1 node k has access to a set 
of unbiased local estimates {       }     

 from its 

neighborhood nodes Nk. This local estimation gathered from 
neighboring nodes are consolidated or merged at the node k 
and which gives a gross estimate weight wk(i-1). mkl is the 
merger coefficients [13] which hold the information of sensor 
network topology. The purpose of the merger coefficient is to 
determine which nodes l ϵ Nk should share their local estimates  
{       } other nodes Nk. If nodes k and l are not connected, 
the value of the merger coefficient is zero; otherwise, it is one. 
The coefficients mkl give rise to a merger matrix M=[mkl]. 
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Each node in Nk will possess a distinct neighborhood within 
the connected sensor network. Another condition for the 
merger coefficient is as follows: [12] 

 1kl

l

m                            (11) 

 , 1k il N k   (12) 

This help in gathering information from nodes distributed 
across the network [18]. Therefore, we assume that M is a 
stochastic matrix. 

 Step 2: For optimizing weights and local optimum 
solution, we apply Particle Swarm Optimization (PSO)[22]-
[25]. The position of a particle corresponds to a candidate 
solution, and the velocity of the particle determines the 
direction and magnitude of its movement in the search space. 
The position of a Node Nk at iteration i is updated based on its 
current position and velocity, and its best-known position 
(personal best) and the best-known position of any particle in 
its neighborhood (global best). 

The basic equations of PSO are as follows: 

Initialization 

 Initialize the position and velocity of each particle randomly 
within the search space. 

 Set the personal best position pi of each particle to its initial 
position. 

 Identify the global best position φi(t+1) among all particles. 

Update Equation 

 Update the velocity Vi of each particle using the following 
equation: 

1 1 2 2( 1) ( ) ( ( )) ( ( 1) ( ))i i i i i iv t wv t c r p x t c r t x t      

(13) 

Where c1 and c2  are acceleration coefficients and r1 and r2 are 
random values samples from an uniform distribution in the 
range [0,1]. W is the inertia weight controlling the impact of the 

previous velocity. 

 Update the position xi of each particle using the updated 
velocity by equation (14) 

 ( 1) ( ) ( 1)i i ix t x t v t     (14) 

Update personal and Global Bests  

 For each particle i, update its personal best position pi if the 
current position xi(t+1) is better (according to the objective 
function) than its previous best position. 

 Update the global best position g by comparing the fitness 
(objective function value) of each particle's personal best 
position with the current global best[26]-[28]. 

Termination 

Repeat the update process for a fixed number of iterations or 

until a termination condition (e.g., reaching a certain fitness 

threshold) is met. 

III. SIMULATION RESULTS 

In this section, we compare the performance of the proposed 

IIR DPSO algorithm with the existing IIR DLMS using two 

IIR systems. Each node within a sensor network contains the 

IIR system structure depicted in Fig. 2. The input signal is 

characterized as a zero-mean white random signal with a 

uniform distribution. The simulation is conducted under 

various Signal-to-Noise Ratio (SNR) conditions: 10dB and 

TABLE I. ESTIMATED PARAMETERS OBTAINED FOR EXAMPLE UNDER 

DIFFERENT NOISE CONDITIONS USING IIR ILMS AND IIR IPSO DURING 

TRAINING 

True 

Coefficie

nts 

Estimated 

Parameters using 

IIR DPSO 

Estimated 

Parameters Using 

IIR DLMS  

20dB 10dB 20dB 10dB 

0.05 0.0528 0.0528 0.0683 0.0513 

-0.4 -0.4420 -0.4420 -0.3884 -0.3626 

1.1314 1.090 1.090 1.1523 1.2135 

-0.25 -0.2145 -0.2145 -0.2497 -0.3246 

 

TABLE II. COMPARISON OF SIMULATION TIME DURING TRAINING FOR 

EXAMPLE 

Noise 
Estimated Parameters  

IIR DPSO IIR DLMS 

10dB 34.33sec 7.18sec 

20dB 40.41sec 7.34sec 
 

 

TABLE III. COMPARISON OF SUM OF SQUARE OF ERROR 
DURING TESTING FOR EXAMPLE 

Noise 
Estimated Parameters using IIR IPSO 

IIR DPSO IIR DLMS 

10dB    0.0498  0.0975 

20dB 0.1593 0.1816 
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20dB, executed on a computer equipped with an i5 processor 

and 8GB of RAM. The noise is additive and follows a white 

random process that is uncorrelated with the input signal. Key 

simulation parameters for the IIR DPSO include the number of 

sensor nodes set at 25. As the training progresses, the Mean 

Squared Error (MSE) at each node consistently decreases until 

it reaches its minimal value, signifying the conclusion of the 

training phase. The Sum of Squared Error (SSE) is employed 

as a performance metric during testing to compare the IIR 

DLMS and the proposed IIR DPSO algorithms. 

 

Example 1: 

The transfer function of a 2
nd

 order IIR system [12] present at 

sensor node given by 

  
1

1 2

0.05 0.4

1 1.1314 0.25
p

z
H z

z z



 

 
  

  
 (15) 

This can be modeled using 2
nd

 order adaptive IIR filter as 
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The convergence characteristics shown in figure 3 reveals that 

the minimum MSEs obtained using IIR DPSO is less than IIR 

DLMS. The simulation time of IIR DLMS and IIR DPSO are 

shown in Table 2. Table 3 shows the comparison of the sum of 

the square of error (SSE) during testing of IIR ILMS and IIR 

DLMS. It is observed from Table 3 that the SSE in the case of 

IIR DPSO is nearly similar to IIR DLMS.                                                                                             

IV. CONCLUSION 

The paper introduces a diffusion strategy based on the PSO 

algorithm for distributed parameter estimation of IIR systems 

deployed at each node within a sensor network. Simulation 

studies conducted on IIR systems demonstrate that the 

proposed IIR DPSO algorithm achieves lower Mean Square 

Error (MSE) compared to the IIR DLMS. The accuracy of 

filter weights in our algorithm is nearly equivalent to that of 

the IIR DLMS. Furthermore, it is observed that as the noise 

strength increases (resulting in decreased SNR values), the 

parameter matching value deviates, indicating a decline in 

effective identification quality in the presence of high noise 

levels. Overall, the performance evaluation of the proposed 

IIR DLMS algorithm highlights its suitability for parameter 

identification in distributed IIR systems. The algorithm proves 

to be effective for large sensor networks and resilient to link 

failures. 
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