ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

International Journal of Research and Technology VVolume 12, Issue 1, January 2024

VLSI Architecture for Matrix Multiplier using Parallel
To Parallel Input Multiple Output Technique

Rajesh Yadav', Prof. Satyarth Tiwari’
M. Tech. Scholar, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal*
Guide, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal?

Abstract— In the present scenario, the rapid growth of
wireless communication, multimedia applications,
robotics and graphics increases the demand for resource
efficient, high throughput and low power digital signal
processing (DSP) systems. Matrix multiplication (MM)
is the most widely used fundamental processing element
in almost all DSP systems ranging from audio/video
signal processing to wireless sensor networks. Hardware
implementation of MM requires a huge number of
arithmetic operations that affect the speed and consumes
more area and power. Pipelining and parallel processing
are the two methods used in the DSP systems to reduce
the area. MM is the kernel operation used in many
transform, image and discrete signal processing
application. We develop new algorithms and new
techniques for MM on configurable devices. In this
paper, we have proposed MM using round based
approximated multipliers. This design reduced hardware
complexity, delay and input/output data format to match
different application needs. The PPI-MO based MM is
design Xilinx software and simulated number of slice,
look up table and delay.

Keywords—Matrix Multiplication, Parallel to Parallel
Input Multiple Output (PPI-MOQO), Round based
Approximated Multipliers (ROAM)

1. INTRODUCTION

For engineering applications and various scientific
computing, matrix multiplication is a fundamental
computation. To improve the performance of such
applications, a fast and efficient matrix multiplication
algorithm is required. This can be accomplished by
designing an efficient multiplier with parallel and
pipelined architectures [1]. In parallel processing the
performance can be increased by executing many
floating point operations simultaneously or in parallel.
The parallelization strategy allows the use of many
processing elements in parallel. Pipelining is a technique
in which multiple floating point operations are
overlapped in execution. Scheduling process reorders the
execution order of floating point operation so as to avoid
data hazard. Reliable and area efficient Urdhva
Tiryagbhyam and Strassen multiplier architectures are
designed to improve the performances of the floating
point unit [2, 3]. The major problems faced by most of
the multipliers are delay and area. By providing the
proper pipelining process and reuse of the available
components, the overall performances of the system can

wWww.ijrt.org

be improved. The multiplier unit for large number
performance is improved by using Karatsuba and Urdhva
Tiryagbhyam algorithm combination. Hence the effective
methods are found to design an architecture that
improves the performance by complete utilization of the
available resources [4].
The complexity of matrix multiplication has attracted a
lot of attention in the last forty years. In this paper we
will consider matrix multiplication as the problem, give
various methods to solve this problem and find the best
one that takes the least time.
Matrix multiplication is the kernel of many scientific
applications [5, 6]. It is a binary operation that takes a
pair of matrices, and produces another matrix. If A is an
n-bym matrix and B is an m-by-p matrix, the result AB
of their multiplication is an n-by-p matrix defined only if
the number of columns m of the left matrix A is the equal
to the number of rows of the right matrix B. The result of
matrix multiplication is a matrix whose elements are
found by multiplying the elements within a row from the
first matrix by the associated elements within a column
from the second matrix and summing the products [7].
The procedure for finding an element of the resultant
matrix is to multiply the first element of a given row
from the first matrix times the first element of a given
column from the second matrix, then add to that the
product of the second element of the same row from the
first matrix and the second element of the same column
from the second matrix, then add the product of the third
elements and so on, until the last element of that row
from the first matrix is multiplied by the last element of
that column from the second matrix and added to the sum
of the other products [8].
Ex:

(A 8] fE F‘)= (A.E-k-BG AF +B‘H’]

cC D/ H CE+DG CF+DH!/

As we mentioned before there are many methods to
calculate the multiplication of matrixes. All of them give
the same result but each one consumes different space in
memory and takes different processor time. The methods
that we will test are:

1. Row by Column method

2. Row by Row method

3. Column by Column method
4. Strassen method

20

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

Il. PROPOSED METHODOLOGY

Proposed Parallel-Parallel
Output(PPI-MO)

In this design, we opted for faster operating speed by

increasing the number of multipliers and registers
performing the matrix multiplication operation.

a dy; as1
by % %

Input and Multi

[l
«53{,
:
&

1
b,
| lags A ass
—_—l o _— [1 >
b3 > v o
1
by | | |
1 Adder Adder Adder
C13 Cy2 Cy1 C23 C2 Cp1 C33 C32 C31

Fig. 1: Proposed PPl — MO Design forn=3

We have derived for parallel computation of 3 x 3
matrix-matrix multiplication and the structure is shown
in figure 1.

For an nxn matrix — matrix multiplication, the operation

is performed using n? number of multipliers, n?

number of registers and n? —n number of adders. The
registers are used to store the partial product results. Each

of the N? number of multipliers has one input from
matrix B and the other input is obtained from a particular
element of matrix A.

The dataflow for matrix B is in row major order and is
fed simultaneously to the particular row of multipliers

such that the i™ row of matrix B is simultaneously input

to the i™ row of multipliers, where 1 < i < n . The
elements of matrix are input to the multipliers such that,

(j,i)™ element of matrix A is input to

The (i, j)™ multiplier, wherel < ij < n. The resultant

products from each column of multipliers are then added
to give the elements of output matrix C. In one cycle, n
elements of matrix C are calculated, so the entire matrix
the elements of matrix C are obtained in column major
order with n elements multiplication operation requires n
cycles to complete.

Let us consider the example of a 3x3 matrix — matrix
multiplication operation, for a better analysis of the
design (as shown in figure 1). The hardware complexities

wWww.ijrt.org

International Journal of Research and Technology VVolume 12, Issue 1, January 2024

involved for this design are 9 multipliers, 9 registers and
6 adders. Elements from the first row of matrix B (by; by,
bi3) are input simultaneously to the first row of
multipliers (My; Mg Mgg) in 3 cycles. Similarly,
elements from other two rows of matrix B are input to
the rest two rows of multipliers. A single element from
matrix A is input to each of the multipliers such that,

(j,i)™ element of matrix A is input to the multiplier

Mi;, where 1 <i,j < 3. The resultant partial products from
each column of multipliers (M My, M, where 1 < k 3)
are added up in the adder to output the elements of
matrix C. In each cycle, one column of elements from
matrix C is obtained (Cy Cy C3¢ Wherel < k < 3) and so
the entire matrix multiplication operation is completed in
3 cycles.

Rounded Based Approximated Multipliers

ROBA is incredibly desirable to achieve this
minimization with the least amount of output (speed)
penalty possible. These portable devices' digital image
processing (DSP) blocks are essential for understanding a
variety of multimedia applications. The arithmetic logic
unit is the mathematical centre of these blocks, including
multiplications responsible for the number of arithmetic
operations in these DSP systems. RoBA multiplier offers
a certified, unused, high output, high speed and energy
effective rounding multiplier [9]. We give a fast speed,
energy-efficient estimate multiplier. The theoretical
procedure refers to multiplications, both signed and non-
signed. The estimated multiplier requires three hardware
design units, one non-signed and two signed. By
contrasting their output with that of some estimated and
reliable multipliers using various design criteria, the
efficacy of the suggested multipliers is evaluated. Also,
two framework images processing (sharping and
smoothing) are researching the utility of the estimated
multiplier suggested [10].

YxX

Shifter

X1

X | ¥ L — Bx 4
Sien Shifter Adder Selector [~ signSet —
= Rounding 141
Detector
. .
Y iy
" Shufter J B x4y
A B

Fig. 2: Block diagram of ROBA Multiplier

1. SIMULATION RESULT

A FPGA (Field Programmable Gate Array) is an
incorporated circuit comprising of an assortment of
rationale squares, 1/0 cells and interconnection assets and
this permits the chip to be reconfigured to associate the
sources of info and vyields (1/O) and rationale squares
together from various perspectives. The representations

21

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

of the permanent points and floating points are generally
used in numerous applications. It is mainly applicable for
designing process of the DSP applications. Also, floating
point is demonstrated as very small to large numbers,
which employed with the improved range. Every
rationale square has customarily the capacity to do a
basic rationale activity, for example, AND or XOR, and
for the most part contains some level of memory, it be a
straightforward flip-flop or a progressively intricate
square of memory. The rationale squares have developed
to be more rationale work squares utilizing query tables
inside the squares to switch the current capacity; to
perform assignments such math tasks.

For parallel in multiple out shift registers, all data bits
appear on the parallel input immediately following the
simultaneous entry of the date bits. Four-bit parallel in
multiple out shift register is constructed by four D flip-
flops.

In fig. 3 and fig. 4 have shown the resistor transistor
logic (RTL) using 3%3 PPI-MO matrix multiplication and
output waveform of 3x3 PPI-MO matrix multiplication
respectively.

matrix_3__

Y

matrix_3 M_M

Fig. 3: View Technology Schematic of 3x3 Matrix
Multiplications using PPI-MO

wWww.ijrt.org

International Journal of Research and Technology VVolume 12, Issue 1, January 2024

matriz_3 M_M:1

Fig. 4: View Technology Schematic of 3x3 Matrix
Multiplications using PPI-MO

e : 631lx4tggl44-3

Maximum output

Maximum combinat 1 : 13. 1S

Fig. 5: Summary of 3x3 Matrix Multiplications using
PPI-MO

Figure 6: View Technology Schematic of 4x4 Matrix
Multiplications using PPI-MO

22

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

Fig. 7: View Technology Schematic of 4x4 Matrix
Multiplications using PPI-MO

of 0%
of o%
of 8%
of 1%
of 231 84%
of 231 0%
of 231 14%
£ 102 111% (%)
Es 1 ut of 16 €%
out of 8 100%

Minimum period: 1
Mi

mum input a
Maximum output ed time afte
Maximum combinational path delay:

Fig. 8: Summary of 3x3 Matrix Multiplications using
PPI-MO

V. CONCLUSION

From the design analysis, it is inferred that the parallel
matrix multiplication with ROAM multipliers consumes
less area and delay compared to previous algorithm
which is designed using array multiplier based on
pipeline processing The present investigation is based on

wWww.ijrt.org

International Journal of Research and Technology VVolume 12, Issue 1, January 2024

the area, delay and power consumption with promising
results. To reduce the row on a matrix, a series of row
processes are performed to transform the matrix until the
lower left hand end of the matrix is occupied with zeros.
Three basic row operations performed are swap any two
rows of the input matrices and multiply a non-zero
constant to a row and add scalar multiple of one row to
another.

REFRENCES

[1] Chen Yang;Siwei Xiang;Jiaxing Wang;Liyan Liang,
“A High Performance and Full Utilization Hardware
Implementation of Floating Point Arithmetic Units”,
28th IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), IEEE 2021.

[2] Rongyu Ding;Yi Guo;Heming Sun;Shinji Kimura,
“Energy-Efficient Approximate Floating-
Point Multiplier Based on Radix-8 Booth Encoding”,
IEEE 14th International Conference on ASIC
(ASICON), IEEE 2021.

[3] Wei Mao;Kai Li;Xinang Xie;Shirui Zhao;He Li;Hao
Yu, “A Reconfigurable Multiple-Precision Floating-
Point Dot Product Unit for High-Performance
Computing”, Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE 2021.

[4] Rahul Rathod;P Ramesh;Pratik S Zele;Annapurna K
Y, “Implementation of 32-Bit
Complex Floating Point Multiplier Using
Vedic Multiplier, Array Multiplier and Combined
integer and floating point Multiplier (CIFM)”,
International ~ Conference for Innovation in
Technology (INOCON), IEEE 2020.

[5] S. Ross Thompson;James E. Stine, “A Novel
Rounding Algorithm for a High Performance IEEE
754 Double-Precision Floating-Point Multiplier”,
38th International Conference on Computer Design
(ICCD), IEEE 2020.

[6] P.L. Lahari;M. Bharathi;Yasha Jyothi M Shirur,
“High Speed Floating Point Multiply Accumulate
Unit using Offset Binary Coding”, 7th International
Conference on Smart Structures and Systems
(ICSSS), IEEE 2020.

[7] Lakshmi kiran Mukkara and K.Venkata Ramanaiah,
“A Simple Novel Floating Point Matrix Multiplier
VLSI Architecture for Digital Image Compression
Applications”, 2nd International Conference on
Inventive ~ Communication and Computational
Technologies (ICICCT 2018) IEEE.

[8] Soumya Havaldar, K S Gurumurthy, “Design of
Vedic IEEE 754 Floating Point Multiplier”, IEEE
International Conference On Recent Trends In
Electronics Information Communication Technology,
May 20-21, 2016, India.

[9] Ragini Parte and Jitendra Jain, “Analysis of Effects of
using Exponent Adders in IEEE- 754 Multiplier by
VHDL”, 2015 International Conference on Circuit,
Power and Computing Technologies [ICCPCT] 978-
1-4799-7074-2/15/$31.00 ©2015 IEEE.

[10] Ross Thompson and James E. Stine, “An IEEE 754
Double-Precision Floating-Point Multiplier for
Denormalized and Normalized Floating-Point
Numbers”, International conference on IEEE 2015.

[11] M. K. Jaiswal and R. C. C. Cheung, “High
Performance FPGA Implementation of Double
Precision Floating Point Adder/Subtractor”, in

23

https://ieeexplore.ieee.org/author/37291794500
https://ieeexplore.ieee.org/author/37089234549
https://ieeexplore.ieee.org/author/37089233355
https://ieeexplore.ieee.org/author/37089167176
https://ieeexplore.ieee.org/author/37086589752
https://ieeexplore.ieee.org/author/38477683400
https://ieeexplore.ieee.org/author/37085450544
https://ieeexplore.ieee.org/author/37088890980
https://ieeexplore.ieee.org/author/37088891842
https://ieeexplore.ieee.org/author/37088802221
https://ieeexplore.ieee.org/author/37088914056
https://ieeexplore.ieee.org/author/37275013000
https://ieeexplore.ieee.org/author/37275013000
https://ieeexplore.ieee.org/author/37088214478
https://ieeexplore.ieee.org/author/37088649423
https://ieeexplore.ieee.org/author/37088650277
https://ieeexplore.ieee.org/author/37088650820
https://ieeexplore.ieee.org/author/37088650820
https://ieeexplore.ieee.org/author/37088493685
https://ieeexplore.ieee.org/author/37273496500
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/author/37088443206
https://ieeexplore.ieee.org/author/37087502574
https://ieeexplore.ieee.org/author/37085570909

ISSN: 2321-7529 (Online) || ISSN: 2321-7510 (Print)

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

International Journal of Hybrid Information
Technology, vol. 4, no. 4, (2011) October.

B. Fagin and C. Renard, "Field Programmable Gate
Arrays and Floating Point Arithmetic,” IEEE
Transactions on VLS1, vol. 2, no. 3, pp. 365-367,
1994,

N. Shirazi, A. Walters, and P. Athanas, "Quantitative
Analysis of Floating Point Arithmetic on FPGA
Based Custom Computing Machines," Proceedings of
the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM"95), pp.155-162, 1995.
Malik and S. -B. Ko, “A Study on the Floating-Point
Adder in FPGAs”, in Canadian Conference on
Electrical and Computer Engineering (CCECE-06),
(2006) May, pp. 86-89.

D. Sangwan and M. K. Yadav, “Design and
Implementation of Adder/Subtractor and
Multiplication Units for Floating-Point Arithmetic”,
in International Journal of Electronics Engineering,
(2010), pp. 197-203.

L. Louca, T. A. Cook and W. H. Johnson,
“Implementation of IEEE Single Precision Floating
Point Addition and Multiplication on FPGAs”,
Proceedings of 83rd IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM " 96), (1996),
pp. 107-116.

Jaenicke and W. Luk, "Parameterized Floating-Point
Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol.
2, (2001), pp. 897-900.

Lee and N. Burgess, “Parameterisable Floating-point
Operations on FPGA”, Conference Record of the
Thirty-Sixth Asilomar Conference on Signals,
Systems, and Computers, (2002).

M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient
Implementation of Floating Point Multiplier”, Saudi
International Electronics, Communications and
Photonics Conference (SIECPC), (2011) April 24-26,
pp. 1-5.

wWww.ijrt.org

International Journal of Research and Technology VVolume 12, Issue 1, January 2024

24

