
ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 20

VLSI Architecture for Matrix Multiplier using Parallel

To Parallel Input Multiple Output Technique

Rajesh Yadav
1
, Prof. Satyarth Tiwari

2

M. Tech. Scholar, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal
1

Guide, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal
2

 Abstract— In the present scenario, the rapid growth of

wireless communication, multimedia applications,

robotics and graphics increases the demand for resource

efficient, high throughput and low power digital signal

processing (DSP) systems. Matrix multiplication (MM)

is the most widely used fundamental processing element

in almost all DSP systems ranging from audio/video

signal processing to wireless sensor networks. Hardware

implementation of MM requires a huge number of

arithmetic operations that affect the speed and consumes

more area and power. Pipelining and parallel processing

are the two methods used in the DSP systems to reduce

the area. MM is the kernel operation used in many

transform, image and discrete signal processing

application. We develop new algorithms and new

techniques for MM on configurable devices. In this

paper, we have proposed MM using round based

approximated multipliers. This design reduced hardware

complexity, delay and input/output data format to match

different application needs. The PPI-MO based MM is

design Xilinx software and simulated number of slice,

look up table and delay.

Keywords—Matrix Multiplication, Parallel to Parallel

Input Multiple Output (PPI-MO), Round based

Approximated Multipliers (ROAM)

1. INTRODUCTION

For engineering applications and various scientific

computing, matrix multiplication is a fundamental

computation. To improve the performance of such

applications, a fast and efficient matrix multiplication

algorithm is required. This can be accomplished by

designing an efficient multiplier with parallel and

pipelined architectures [1]. In parallel processing the

performance can be increased by executing many

floating point operations simultaneously or in parallel.

The parallelization strategy allows the use of many

processing elements in parallel. Pipelining is a technique

in which multiple floating point operations are

overlapped in execution. Scheduling process reorders the

execution order of floating point operation so as to avoid

data hazard. Reliable and area efficient Urdhva

Tiryagbhyam and Strassen multiplier architectures are

designed to improve the performances of the floating

point unit [2, 3]. The major problems faced by most of

the multipliers are delay and area. By providing the

proper pipelining process and reuse of the available

components, the overall performances of the system can

be improved. The multiplier unit for large number

performance is improved by using Karatsuba and Urdhva

Tiryagbhyam algorithm combination. Hence the effective

methods are found to design an architecture that

improves the performance by complete utilization of the

available resources [4].

The complexity of matrix multiplication has attracted a

lot of attention in the last forty years. In this paper we

will consider matrix multiplication as the problem, give

various methods to solve this problem and find the best

one that takes the least time.

Matrix multiplication is the kernel of many scientific

applications [5, 6]. It is a binary operation that takes a

pair of matrices, and produces another matrix. If A is an

n-bym matrix and B is an m-by-p matrix, the result AB

of their multiplication is an n-by-p matrix defined only if

the number of columns m of the left matrix A is the equal

to the number of rows of the right matrix B. The result of

matrix multiplication is a matrix whose elements are

found by multiplying the elements within a row from the

first matrix by the associated elements within a column

from the second matrix and summing the products [7].

The procedure for finding an element of the resultant

matrix is to multiply the first element of a given row

from the first matrix times the first element of a given

column from the second matrix, then add to that the

product of the second element of the same row from the

first matrix and the second element of the same column

from the second matrix, then add the product of the third

elements and so on, until the last element of that row

from the first matrix is multiplied by the last element of

that column from the second matrix and added to the sum

of the other products [8].

Ex:

As we mentioned before there are many methods to

calculate the multiplication of matrixes. All of them give

the same result but each one consumes different space in

memory and takes different processor time. The methods

that we will test are:

1. Row by Column method

2. Row by Row method

3. Column by Column method

4. Strassen method

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 21

II. PROPOSED METHODOLOGY

Proposed Parallel-Parallel Input and Multi

Output(PPI-MO)

In this design, we opted for faster operating speed by

increasing the number of multipliers and registers

performing the matrix multiplication operation.

We have derived for parallel computation of 3 × 3

matrix-matrix multiplication and the structure is shown

in figure 1.

For an n×n matrix – matrix multiplication, the operation

is performed using
2n number of multipliers,

2n

number of registers and nn 2
 number of adders. The

registers are used to store the partial product results. Each

of the
2n number of multipliers has one input from

matrix B and the other input is obtained from a particular

element of matrix A.

The dataflow for matrix B is in row major order and is

fed simultaneously to the particular row of multipliers

such that the
thi row of matrix B is simultaneously input

to the
thi row of multipliers, where 1 < i < n . The

elements of matrix are input to the multipliers such that,
thij),(element of matrix A is input to

The
thji),(multiplier, where1 < i,j < n. The resultant

products from each column of multipliers are then added

to give the elements of output matrix C. In one cycle, n

elements of matrix C are calculated, so the entire matrix

the elements of matrix C are obtained in column major

order with n elements multiplication operation requires n

cycles to complete.

Let us consider the example of a 3×3 matrix – matrix

multiplication operation, for a better analysis of the

design (as shown in figure 1). The hardware complexities

involved for this design are 9 multipliers, 9 registers and

6 adders. Elements from the first row of matrix B (b11 b12

b13) are input simultaneously to the first row of

multipliers (M11 M12 M13) in 3 cycles. Similarly,

elements from other two rows of matrix B are input to

the rest two rows of multipliers. A single element from

matrix A is input to each of the multipliers such that,
thij),(element of matrix A is input to the multiplier

Mij, where 1 < i,j < 3. The resultant partial products from

each column of multipliers (M1k M2k M3k where 1 < k 3)

are added up in the adder to output the elements of

matrix C. In each cycle, one column of elements from

matrix C is obtained (C1k C2k C3k where1 < k < 3) and so

the entire matrix multiplication operation is completed in

3 cycles.

Rounded Based Approximated Multipliers
ROBA is incredibly desirable to achieve this

minimization with the least amount of output (speed)

penalty possible. These portable devices' digital image

processing (DSP) blocks are essential for understanding a

variety of multimedia applications. The arithmetic logic

unit is the mathematical centre of these blocks, including

multiplications responsible for the number of arithmetic

operations in these DSP systems. RoBA multiplier offers

a certified, unused, high output, high speed and energy

effective rounding multiplier [9]. We give a fast speed,

energy-efficient estimate multiplier. The theoretical

procedure refers to multiplications, both signed and non-

signed. The estimated multiplier requires three hardware

design units, one non-signed and two signed. By

contrasting their output with that of some estimated and

reliable multipliers using various design criteria, the

efficacy of the suggested multipliers is evaluated. Also,

two framework images processing (sharping and

smoothing) are researching the utility of the estimated

multiplier suggested [10].

Fig. 2: Block diagram of ROBA Multiplier

III. SIMULATION RESULT

A FPGA (Field Programmable Gate Array) is an

incorporated circuit comprising of an assortment of

rationale squares, I/O cells and interconnection assets and

this permits the chip to be reconfigured to associate the

sources of info and yields (I/O) and rationale squares

together from various perspectives. The representations

b3

1

b3

2

b3

3

b2

1

b2

2

b2

3

b1

1

b1

2

b1

3

a11 a21 a31

a12 a22 a32

a13 a23 a33

c33 c32 c31 c23 c22 c21 c13 c12 c11

Adder Adder Adder

Fig. 1: Proposed PPI – MO Design for n = 3

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 22

of the permanent points and floating points are generally

used in numerous applications. It is mainly applicable for

designing process of the DSP applications. Also, floating

point is demonstrated as very small to large numbers,

which employed with the improved range. Every

rationale square has customarily the capacity to do a

basic rationale activity, for example, AND or XOR, and

for the most part contains some level of memory, it be a

straightforward flip-flop or a progressively intricate

square of memory. The rationale squares have developed

to be more rationale work squares utilizing query tables

inside the squares to switch the current capacity; to

perform assignments such math tasks.

For parallel in multiple out shift registers, all data bits

appear on the parallel input immediately following the

simultaneous entry of the date bits. Four-bit parallel in

multiple out shift register is constructed by four D flip-

flops.

In fig. 3 and fig. 4 have shown the resistor transistor

logic (RTL) using 3×3 PPI-MO matrix multiplication and

output waveform of 3×3 PPI-MO matrix multiplication

respectively.

Fig. 3: View Technology Schematic of 3×3 Matrix

Multiplications using PPI-MO

Fig. 4: View Technology Schematic of 3×3 Matrix

Multiplications using PPI-MO

Fig. 5: Summary of 3×3 Matrix Multiplications using

PPI-MO

Figure 6: View Technology Schematic of 4×4 Matrix

Multiplications using PPI-MO

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 23

Fig. 7: View Technology Schematic of 4×4 Matrix

Multiplications using PPI-MO

Fig. 8: Summary of 3×3 Matrix Multiplications using

PPI-MO

IV. CONCLUSION

From the design analysis, it is inferred that the parallel

matrix multiplication with ROAM multipliers consumes

less area and delay compared to previous algorithm

which is designed using array multiplier based on

pipeline processing The present investigation is based on

the area, delay and power consumption with promising

results. To reduce the row on a matrix, a series of row

processes are performed to transform the matrix until the

lower left hand end of the matrix is occupied with zeros.

Three basic row operations performed are swap any two

rows of the input matrices and multiply a non-zero

constant to a row and add scalar multiple of one row to

another.

REFRENCES

[1] Chen Yang;Siwei Xiang;Jiaxing Wang;Liyan Liang,

―A High Performance and Full Utilization Hardware

Implementation of Floating Point Arithmetic Units‖,

28th IEEE International Conference on Electronics,

Circuits, and Systems (ICECS), IEEE 2021.

[2] Rongyu Ding;Yi Guo;Heming Sun;Shinji Kimura,

―Energy-Efficient Approximate Floating-

Point Multiplier Based on Radix-8 Booth Encoding‖,

IEEE 14th International Conference on ASIC

(ASICON), IEEE 2021.

[3] Wei Mao;Kai Li;Xinang Xie;Shirui Zhao;He Li;Hao

Yu, ―A Reconfigurable Multiple-Precision Floating-

Point Dot Product Unit for High-Performance

Computing‖, Design, Automation & Test in Europe

Conference & Exhibition (DATE), IEEE 2021.

[4] Rahul Rathod;P Ramesh;Pratik S Zele;Annapurna K

Y, ―Implementation of 32-Bit

Complex Floating Point Multiplier Using

Vedic Multiplier, Array Multiplier and Combined

integer and floating point Multiplier (CIFM)‖,

International Conference for Innovation in

Technology (INOCON), IEEE 2020.

[5] S. Ross Thompson;James E. Stine, ―A Novel

Rounding Algorithm for a High Performance IEEE

754 Double-Precision Floating-Point Multiplier‖,

38th International Conference on Computer Design

(ICCD), IEEE 2020.

[6] P.L. Lahari;M. Bharathi;Yasha Jyothi M Shirur,

―High Speed Floating Point Multiply Accumulate

Unit using Offset Binary Coding‖, 7th International

Conference on Smart Structures and Systems

(ICSSS), IEEE 2020.

[7] Lakshmi kiran Mukkara and K.Venkata Ramanaiah,

―A Simple Novel Floating Point Matrix Multiplier

VLSI Architecture for Digital Image Compression

Applications‖, 2nd International Conference on

Inventive Communication and Computational

Technologies (ICICCT 2018) IEEE.

[8] Soumya Havaldar, K S Gurumurthy, ―Design of

Vedic IEEE 754 Floating Point Multiplier‖, IEEE

International Conference On Recent Trends In

Electronics Information Communication Technology,

May 20-21, 2016, India.

[9] Ragini Parte and Jitendra Jain, ―Analysis of Effects of

using Exponent Adders in IEEE- 754 Multiplier by

VHDL‖, 2015 International Conference on Circuit,

Power and Computing Technologies [ICCPCT] 978-

1-4799-7074-2/15/$31.00 ©2015 IEEE.

[10] Ross Thompson and James E. Stine, ―An IEEE 754

Double-Precision Floating-Point Multiplier for

Denormalized and Normalized Floating-Point

Numbers‖, International conference on IEEE 2015.

[11] M. K. Jaiswal and R. C. C. Cheung, ―High

Performance FPGA Implementation of Double

Precision Floating Point Adder/Subtractor‖, in

https://ieeexplore.ieee.org/author/37291794500
https://ieeexplore.ieee.org/author/37089234549
https://ieeexplore.ieee.org/author/37089233355
https://ieeexplore.ieee.org/author/37089167176
https://ieeexplore.ieee.org/author/37086589752
https://ieeexplore.ieee.org/author/38477683400
https://ieeexplore.ieee.org/author/37085450544
https://ieeexplore.ieee.org/author/37088890980
https://ieeexplore.ieee.org/author/37088891842
https://ieeexplore.ieee.org/author/37088802221
https://ieeexplore.ieee.org/author/37088914056
https://ieeexplore.ieee.org/author/37275013000
https://ieeexplore.ieee.org/author/37275013000
https://ieeexplore.ieee.org/author/37088214478
https://ieeexplore.ieee.org/author/37088649423
https://ieeexplore.ieee.org/author/37088650277
https://ieeexplore.ieee.org/author/37088650820
https://ieeexplore.ieee.org/author/37088650820
https://ieeexplore.ieee.org/author/37088493685
https://ieeexplore.ieee.org/author/37273496500
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/author/37088443206
https://ieeexplore.ieee.org/author/37087502574
https://ieeexplore.ieee.org/author/37085570909

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 24

International Journal of Hybrid Information

Technology, vol. 4, no. 4, (2011) October.

[12] B. Fagin and C. Renard, "Field Programmable Gate

Arrays and Floating Point Arithmetic," IEEE

Transactions on VLS1, vol. 2, no. 3, pp. 365-367,

1994.

[13] N. Shirazi, A. Walters, and P. Athanas, "Quantitative

Analysis of Floating Point Arithmetic on FPGA

Based Custom Computing Machines," Proceedings of

the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM"95), pp.155-162, 1995.

[14] Malik and S. -B. Ko, ―A Study on the Floating-Point

Adder in FPGAs‖, in Canadian Conference on

Electrical and Computer Engineering (CCECE-06),

(2006) May, pp. 86–89.

[15] D. Sangwan and M. K. Yadav, ―Design and

Implementation of Adder/Subtractor and

Multiplication Units for Floating-Point Arithmetic‖,

in International Journal of Electronics Engineering,

(2010), pp. 197-203.

[16] L. Louca, T. A. Cook and W. H. Johnson,

―Implementation of IEEE Single Precision Floating

Point Addition and Multiplication on FPGAs‖,

Proceedings of 83rd IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM‟96), (1996),

pp. 107–116.

[17] Jaenicke and W. Luk, "Parameterized Floating-Point

Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol.

2, (2001), pp. 897-900.

[18] Lee and N. Burgess, ―Parameterisable Floating-point

Operations on FPGA‖, Conference Record of the

Thirty-Sixth Asilomar Conference on Signals,

Systems, and Computers, (2002).

[19] M. Al-Ashrafy, A. Salem, W. Anis, ―An Efficient

Implementation of Floating Point Multiplier‖, Saudi

International Electronics, Communications and

Photonics Conference (SIECPC), (2011) April 24-26,

pp. 1-5.

