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 Abstract— In the present scenario, the rapid growth of 

wireless communication, multimedia applications, 

robotics and graphics increases the demand for resource 

efficient, high throughput and low power digital signal 

processing (DSP) systems. Matrix multiplication (MM) 

is the most widely used fundamental processing element 

in almost all DSP systems ranging from audio/video 

signal processing to wireless sensor networks. Hardware 

implementation of MM requires a huge number of 

arithmetic operations that affect the speed and consumes 

more area and power. Pipelining and parallel processing 

are the two methods used in the DSP systems to reduce 

the area. MM is the kernel operation used in many 

transform, image and discrete signal processing 

application. We develop new algorithms and new 

techniques for MM on configurable devices. In this 

paper, we have proposed MM using round based 

approximated multipliers. This design reduced hardware 

complexity, delay and input/output data format to match 

different application needs. The PPI-MO based MM is 

design Xilinx software and simulated number of slice, 

look up table and delay.  
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1. INTRODUCTION 

For engineering applications and various scientific 

computing, matrix multiplication is a fundamental 

computation. To improve the performance of such 

applications, a fast and efficient matrix multiplication 

algorithm is required. This can be accomplished by 

designing an efficient multiplier with parallel and 

pipelined architectures [1]. In parallel processing the 

performance can be increased by executing many 

floating point operations simultaneously or in parallel. 

The parallelization strategy allows the use of many 

processing elements in parallel. Pipelining is a technique 

in which multiple floating point operations are 

overlapped in execution. Scheduling process reorders the 

execution order of floating point operation so as to avoid 

data hazard. Reliable and area efficient Urdhva 

Tiryagbhyam and Strassen multiplier architectures are 

designed to improve the performances of the floating 

point unit [2, 3]. The major problems faced by most of 

the multipliers are delay and area. By providing the 

proper pipelining process and reuse of the available 

components, the overall performances of the system can 

be improved. The multiplier unit for large number 

performance is improved by using Karatsuba and Urdhva 

Tiryagbhyam algorithm combination. Hence the effective 

methods are found to design an architecture that 

improves the performance by complete utilization of the 

available resources [4]. 

The complexity of matrix multiplication has attracted a 

lot of attention in the last forty years. In this paper we 

will consider matrix multiplication as the problem, give 

various methods to solve this problem and find the best 

one that takes the least time. 

Matrix multiplication is the kernel of many scientific 

applications [5, 6]. It is a binary operation that takes a 

pair of matrices, and produces another matrix. If A is an 

n-bym matrix and B is an m-by-p matrix, the result AB 

of their multiplication is an n-by-p matrix defined only if 

the number of columns m of the left matrix A is the equal 

to the number of rows of the right matrix B. The result of 

matrix multiplication is a matrix whose elements are 

found by multiplying the elements within a row from the 

first matrix by the associated elements within a column 

from the second matrix and summing the products [7]. 

The procedure for finding an element of the resultant 

matrix is to multiply the first element of a given row 

from the first matrix times the first element of a given 

column from the second matrix, then add to that the 

product of the second element of the same row from the 

first matrix and the second element of the same column 

from the second matrix, then add the product of the third 

elements and so on, until the last element of that row 

from the first matrix is multiplied by the last element of 

that column from the second matrix and added to the sum 

of the other products [8]. 

Ex: 

 
 

As we mentioned before there are many methods to 

calculate the multiplication of matrixes. All of them give 

the same result but each one consumes different space in 

memory and takes different processor time. The methods 

that we will test are:  

 

1. Row by Column method  

2. Row by Row method  

3. Column by Column method  

4. Strassen method  
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II. PROPOSED METHODOLOGY 

Proposed Parallel-Parallel Input and Multi 

Output(PPI-MO) 

In this design, we opted for faster operating speed by 

increasing the number of multipliers and registers 

performing the matrix multiplication operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have derived for parallel computation of 3 × 3 

matrix-matrix multiplication and the structure is shown 

in figure 1. 

For an n×n matrix – matrix multiplication, the operation 

is performed using 
2n number of multipliers, 

2n  

number of registers and nn 2
 number of adders. The 

registers are used to store the partial product results. Each 

of the 
2n  number of multipliers has one input from 

matrix B and the other input is obtained from a particular 

element of matrix A.  

The dataflow for matrix B is in row major order and is 

fed simultaneously to the particular row of multipliers 

such that the 
thi  row of matrix B is simultaneously input 

to the 
thi  row of multipliers, where 1 < i < n . The 

elements of matrix are input to the multipliers such that, 
thij ),(  element of matrix A is input to  

The 
thji ),( multiplier, where1 < i,j < n. The resultant 

products from each column of multipliers are then added 

to give the elements of output matrix C. In one cycle, n 

elements of matrix C are calculated, so the entire matrix 

the elements of matrix C are obtained in column major 

order with n elements multiplication operation requires n 

cycles to complete. 

Let us consider the example of a 3×3 matrix – matrix 

multiplication operation, for a better analysis of the 

design (as shown in figure 1). The hardware complexities 

involved for this design are 9 multipliers, 9 registers and 

6 adders. Elements from the first row of matrix B (b11 b12 

b13) are input simultaneously to the first row of 

multipliers (M11 M12 M13) in 3 cycles. Similarly, 

elements from other two rows of matrix B are input to 

the rest two rows of multipliers. A single element from 

matrix A is input to each of the multipliers such that,  
thij ),(  element of matrix A is input to the multiplier 

Mij, where 1 < i,j < 3. The resultant partial products from 

each column of multipliers (M1k M2k M3k where 1 < k 3) 

are added up in the adder to output the elements of 

matrix C. In each cycle, one column of elements from 

matrix C is obtained (C1k C2k C3k where1 < k < 3) and so 

the entire matrix multiplication operation is completed in 

3 cycles. 
 

Rounded Based Approximated Multipliers  
ROBA is incredibly desirable to achieve this 

minimization with the least amount of output (speed) 

penalty possible. These portable devices' digital image 

processing (DSP) blocks are essential for understanding a 

variety of multimedia applications. The arithmetic logic 

unit is the mathematical centre of these blocks, including 

multiplications responsible for the number of arithmetic 

operations in these DSP systems. RoBA multiplier offers 

a certified, unused, high output, high speed and energy 

effective rounding multiplier [9]. We give a fast speed, 

energy-efficient estimate multiplier. The theoretical 

procedure refers to multiplications, both signed and non-

signed. The estimated multiplier requires three hardware 

design units, one non-signed and two signed. By 

contrasting their output with that of some estimated and 

reliable multipliers using various design criteria, the 

efficacy of the suggested multipliers is evaluated. Also, 

two framework images processing (sharping and 

smoothing) are researching the utility of the estimated 

multiplier suggested [10]. 
 

 
Fig. 2: Block diagram of ROBA Multiplier 

 

III. SIMULATION RESULT 

A FPGA (Field Programmable Gate Array) is an 

incorporated circuit comprising of an assortment of 

rationale squares, I/O cells and interconnection assets and 

this permits the chip to be reconfigured to associate the 

sources of info and yields (I/O) and rationale squares 

together from various perspectives. The representations 

b3

1 

b3

2 

b3

3 

 

b2

1 

b2

2 

b2

3 

 

b1

1 

b1

2 

b1

3 

 

a11 a21 a31 

a12 a22 a32 

a13 a23 a33 

c33 c32 c31 c23 c22 c21 c13 c12 c11 

Adder  Adder  Adder  

Fig. 1: Proposed PPI – MO Design for n = 3 
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of the permanent points and floating points are generally 

used in numerous applications. It is mainly applicable for 

designing process of the DSP applications. Also, floating 

point is demonstrated as very small to large numbers, 

which employed with the improved range. Every 

rationale square has customarily the capacity to do a 

basic rationale activity, for example, AND or XOR, and 

for the most part contains some level of memory, it be a 

straightforward flip-flop or a progressively intricate 

square of memory. The rationale squares have developed 

to be more rationale work squares utilizing query tables 

inside the squares to switch the current capacity; to 

perform assignments such math tasks. 

For parallel in multiple out shift registers, all data bits 

appear on the parallel input immediately following the 

simultaneous entry of the date bits. Four-bit parallel in 

multiple out shift register is constructed by four D flip-

flops. 

In fig. 3 and fig. 4 have shown the resistor transistor 

logic (RTL) using 3×3 PPI-MO matrix multiplication and 

output waveform of 3×3 PPI-MO matrix multiplication 

respectively. 

 

 
Fig. 3: View Technology Schematic of 3×3 Matrix 

Multiplications using PPI-MO 
 

 
Fig. 4: View Technology Schematic of 3×3 Matrix 

Multiplications using PPI-MO 
 

 
Fig. 5: Summary of 3×3 Matrix Multiplications using 

PPI-MO 

 

 
Figure 6: View Technology Schematic of 4×4 Matrix 

Multiplications using PPI-MO 
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Fig. 7: View Technology Schematic of 4×4 Matrix 

Multiplications using PPI-MO 

 

 

 

Fig. 8: Summary of 3×3 Matrix Multiplications using 

PPI-MO 

 

IV. CONCLUSION 

From the design analysis, it is inferred that the parallel 

matrix multiplication with ROAM multipliers consumes 

less area and delay compared to previous algorithm 

which is designed using array multiplier based on 

pipeline processing The present investigation is based on 

the area, delay and power consumption with promising 

results. To reduce the row on a matrix, a series of row 

processes are performed to transform the matrix until the 

lower left hand end of the matrix is occupied with zeros. 

Three basic row operations performed are swap any two 

rows of the input matrices and multiply a non-zero 

constant to a row and add scalar multiple of one row to 

another. 
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