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Abstract— The fundamental function of arithmetic is 

Addition which is used widely in various VLSI systems 

such as specific application of microprocessors and DSP 

architectures. The key task of addition is adding the two 

binary numbers; it is the basis of several useful functions 

such as division, subtraction, multiplication, addresses 

calculation, etc. Matrix Multiplication (MM) is among 

the most customary elements in digital applications 

comparable to digital signal processing, control units, 

and photo processing on account that of its speedy and 

fast execution of arithmetic operations in a circuit. MM 

acts as the coprocessor that comprises arithmetic 

operations, adders, and multiplications. Speed of 

processor greatly depends on its multiplier as well as 

adder performance. In spite of complexity involved in 

MM operation, its implementation is increasing day by 

day.  Due to which high speed MM architecture become 

important. Several MM architecture designs have been 

developed to decrease the delay and area.  

 

Keywords— Matrix Multiplication, Digital Signal 

Processing, VLSI System 

 

I. INTRODUCTION 

We focus on the fundamental task of matrix 

multiplication, and use deep reinforcement learning 

(DRL) to search for provably correct and efficient matrix 

multiplication algorithms. This algorithm discovery 

process is particularly amenable to automation because a 

rich space of matrix multiplication algorithms can be 

formalized as low-rank decompositions of a specific 

three-dimensional (3D) tensor, called the matrix 

multiplication tensor. This space of algorithms contains 

the standard matrix multiplication algorithm and 

recursive algorithms such as Stassen‟s, as well as the 

(unknown) asymptotically optimal algorithm. Although 

an important body of work aims at characterizing the 

complexity of the asymptotically optimal algorithm, this 

does not yield practical algorithms [1, 2].  

We focus here on practical matrix multiplication 

algorithms, which correspond to explicit low-rank 

decompositions of the matrix multiplication tensor. In 

contrast to two-dimensional matrices, for which efficient 

polynomial-time algorithms computing the rank have 

existed for over two centuries, finding low-rank 

decompositions of 3D tensors (and beyond) is NP-hard 

and is also hard in practice. In fact, the search space is so 

large that even the optimal algorithm for multiplying two 

3 × 3 matrices is still unknown. Nevertheless, in a 

longstanding research effort, matrix multiplication 

algorithms have been discovered by attacking this tensor 

decomposition problem using human search, continuous 

optimization and combinatorial search [3].  

These approaches often rely on human-designed 

heuristics, which are probably suboptimal. We instead 

use DRL to learn to recognize and generalize over 

patterns in tensors, and use the learned agent to predict 

efficient decompositions. A score is assigned based on 

the number of selected operations required to reach the 

correct multiplication result. This is a challenging game 

with an enormous action space (more than 1012 actions 

for most interesting cases) that is much larger than that of 

traditional board games such as chess and Go (hundreds 

of actions). Our framework uses a single agent to 

decompose matrix multiplication tensors of various sizes, 

yielding transfer of learned decomposition techniques 

across various tensors. To address the challenging nature 

of the game, Alpha Tensor uses specialized neural 

network architecture, exploits symmetries of the problem 

and makes use of synthetic training games [4, 5]. 

 

II. LITERATURE REVIEW 

Chen Yang et al. [1], the fields of communication 

algorithms, digital signal processing, artificial 

intelligence; and so on all make extensive use of floating 

point operations. However, system performance and 

hardware overhead have been severely limited by the 

slow computation speed and the excessive use of 

resources. In order to speed up computation and save 

resources, floating point arithmetic units must have high 

area efficiency. Adder, multiplier, and reciprocal 

operator are among the high-performance and area-

efficient floating point arithmetic units discussed in this 

paper. A typical communication scenario of 44 matrix 

inversion serves as the basis for evaluating the proposed 

floating point arithmetic units. Our designs improved 

resource overhead and performance, as demonstrated by 

the experiments. Our designs use only one-fourth of the 

computing latency of Xilinx Vivado IP and save between 

20 and 45 percent of resources. Our designs improve area 

efficiency by 3.65 times and require only 1/4 the 

computing latency of Design Ware IP. 

 

Rongyu Ding et al. [2], due to the limitations of human 

perception, internal operations in digital signal 

processing and machine learning do not require as much 

precision. Since its inception, approximate computing 
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has been viewed as an efficient means of balancing 

energy with precision. By using radix-8 Booth encoding 

on the mantissa part, a new type of approximate floating-

point (FP) multiplier is proposed in this paper. In radix-8 

Booth encoding, we devise the triple multiplicand 

addition. When compared to the IEEE-754 single 

precision FP multiplier, experimental results demonstrate 

that the proposed design can achieve significant 

reductions in area, delay, and power of up to 66.48%, 

23.39%, and 69.02 percent, respectively, while losing 

only 0.18% accuracy. When applied to image smoothing 

and compression, the proposed multipliers exhibit 

minimal quality loss. 

 

Wei Mao et al. [3], optimizing floating-point (FP) dot 

product units (DPUs) is becoming increasingly important 

for training deep learning models and high-performance 

scientific computing. A reconfigurable multiple-precision 

DPU operation has the potential to significantly reduce 

the cost of area and power due to the various precision 

requirements of applications. However, the current 

approaches may leave hardware resources unused for 

operations of varying precisions and result in redundant 

bits for unit multipliers. For high-performance computing 

(HPC) applications, a reconfigurable multiple-precision 

FP DPU design is proposed in this paper. The FP DPU 

can be changed in the following ways. For three-mode 

operations, a bit-partitioning technique with a 

programmable mixed-precision multiplier is provided to 

reduce the number of redundant bits: 20 operations with 

half-precision Dot Product (DP), 5 with single precision 

DP, and 1 with double precision DP. Without consuming 

hardware resources, any mode can be executed in two 

clock cycles. Using simulation results and the UMC 55-

nm process, the proposed design is realized. Contrasted 

and the current numerous accuracy FP strategies, the 

proposed DPU accomplishes 88.9% and 35.8% region 

saving execution for FP16 and FP32 activities, 

individually. Furthermore, when compared to fixed FP32 

and FP64 operations, the proposed reconfigurable DPU 

can accelerate maximum throughput rates by up to 4 and 

20 percent when used in benchmarked HPC applications 

with multiple precisions. 

 

Rahul Rathod et al. [4], signal processing and 

multimedia computations make use of floating point 

numbers. When compared to addition and subtraction, 

the process of multiplication necessitates more 

processing time and hardware resources. The system's 

execution time is determined by the multiplier processing 

speed because it consumes the majority of time. On 

VIVADO DESIGN SUITE 2018.3, Vedic multipliers, 

array multipliers, and CIFM multipliers are used to 

implement complex floating point multiplication, and 

their performance is compared in this paper. 

 

 

S. Ross Thompson et al. [5], complete implementation 

that works with both normalized and denormalized 

numbers is also included in this paper, along with a 

brand-new algorithm for IEEE 754 Floating Point 

Multiplication. Based on injection rounding, the new 

rounder injects two injections into the intermediate 

product instead. When the product does not overflow, the 

first injection handles the situation, while the second 

injection handles the situation. To handle the two 

injection constants and reduce hardware duplication, a 

special adder is developed. The complex split between 

upper and lower bit paths in the single injection rounding 

algorithm is eliminated by dual injection rounding [1], 

which reduces all three key design targets; delay (1.2 

percent), area (6.4 percent), and power. A standard 

injection rounder, Synopsys® DesignWareTM, and 

Cadence® ChipWareTM are compared to our novel 

design. 

 

P.L. Lahari et al. [6], the less-delay-efficient multiplier 

and accumulator unit for inner product, filtering [3], 

convolution, image and video processing, and other 

applications are the subjects of this paper.In a digital 

signal processor, the multiply and accumulate unit plays 

an important role.On planning this consumes enormous 

region since it contains fractional items so Conveyed 

Number juggling is considered to work on the speed 

however for each additional information size of the ROM 

increments dramatically so offset twofold coding 

liked.The processor's overall speed will increase by using 

offset binary coding with floating point.Xilinx 14.7 ISE 

software is used to simulate and synthesize these 

designs.When compared to other designs, it achieves the 

best area and results with less delay. 

 

Lakshmi kiran Mukkara et al. [7], for implementation 

of Low Power VLSI Architectures in the area of Digital 

Image Processing applications, Matrix Multiplication is a 

key arithmetic operation. To construct VLSI 

architectures with Low Power, High Speed and Low 

area, Matrix Multiplication design becomes complex. In 

this paper, a simple novel VLSI architecture for FPMM 

is presented. It is designed by considering Pseudo code 

for matrix multiplication, CSD multiplication algorithm 

for power reduction, Conventional floating point number 

format and Pipelining concept for improving speed. 

FPMM design is applicable for any arbitrary size of 

matrices by following matrix rules.  

 

Soumya Havaldar et al. [8], gives an FPGA Based High 

Speed IEEE-754 Double Precision Floating Point 

Multiplier Using Verilog. This paper has implemented 

DPFP Multiplier using parallel Adder. A high speed 

floating point double precision multiplier is implemented 

on a Virtex-6 FPGA. In addition, the proposed design is 

compliant with IEEE-754 format and handles over flow, 

under flow, rounding and various exception conditions. 

The design achieved the operating frequency of 414.714 

MHz with an area of 648 slices. 

 

Ragini Parte et al. [9], IEEE point number-crunching 

has an immense application in DSP, advanced PCs, 

robots because of its capacity to speak to little numbers 

https://ieeexplore.ieee.org/author/37085450544
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and huge numbers and in addition marked numbers and 

unsigned numbers. Disregarding unpredictability 

included in gliding point number juggling, its usage is 

expanding step by step. Here we break down the impacts 

of utilizing three unique sorts of adders while figuring 

the single accuracy and twofold exactness skimming 

point increase. We additionally exhibit the increase of 

significand bits by disintegration of operands strategy for 

IEEE 754 standard. 

 

III. DIFFERENT TYPES OF ADDER 

Parallel Adder:- 

Parallel adder can add all bits in parallel manner i.e. 

simultaneously hence increased the addition speed. In 

this adder multiple full adders are used to add the two 

corresponding bits of two binary numbers and carry bit 

of the previous adder. It produces sum bits and carry bit 

for the next stage adder. In this adder multiple carry 

produced by multiple adders are rippled, i.e. carry bit 

produced from an adder works as one of the input for the 

adder in its succeeding stage. Hence sometimes it is also 

known as Ripple Carry Adder (RCA). Generalized 

diagram of parallel adder is shown in figure 3. 

 

 
Figure 3: Parallel Adder (n=7 for SPFP and n=10 for DPFP)  

 

An n-bit parallel adder has one half adder and n-1full 

adders if the last carry bit required. But in 754 

multiplier‟s exponent adder, last carry out does not 

required so we can use XOR Gate instead of using the 

last full adder. It not only reduces the area occupied by 

the circuit but also reduces the delay involved in 

calculation. For SPFP and DPFP multiplier‟s exponent 

adder, here we Simulate 8 bit and 11 bit parallel adders 

respectively as show in figure 4. 

 

 
Figure 4: Modified Parallel Adder (n=7 for SPFP and n=10 for 

DPFP)  

 

Carry Skip Adder:- 

This adder gives the advantage of less delay over Ripple 

carry adder. It uses the logic of carry skip, i.e. any 

desired carry can skip any number of adder stages. Here 

carry skip logic circuitry uses two gates namely “and 

gate” and “or gate”. Due to this fact that carry need not to 

ripple through each stage. It gives improved delay 

parameter. It is also known as Carry bypass adder. 

Generalized figure of Carry Skip Adder is shown in 

figure 5. 

 
Figure 5: Carry Skip Adder 

 

Carry Select Adder:- 

Carry select adder uses multiplexer along with RCAs in 

which the carry is used as a select input to choose the 

correct output sum bits as well as carry bit. Due to this, it 

is called Carry select adder. In this adder  two RCAs are 

used to calculate the sum bits simultaneously for the 

same bits assuming two different  carry inputs i.e. „1‟  

and „0‟. It is the responsibility of multiplexer to choose 

correct output bits out of the two, once the correct carry 

input is known to it. Multiplexer delay is included in this 

adder. Generalized figure of Carry select adder is shown 

in figure 3.9. Adders are the basic building blocks of 

most of the ALUs (Arithmetic logic units) used in Digital 

signal processing and various other applications. Many 

types of adders are available in today‟s scenario and 

many more are developing day by day.  

 

 
 

Figure 6: Carry Select Adder 

 

Half adder and Full adder are the two basic types of 

adders. Almost all other adders are made with the 

different arrangements of these two basic adders only. 

Half adder is used to add two bits and produce sum and 

carry bits whereas full adder can add three bits 

simultaneously and produces sum and carry bits. 

 

IV. CONCLUSION 

When you want to solve any problem, try to choose the 

best method that consumes less space and time to execute 

efficiently. For matrix multiplication, we tested some 

methods Row by Row, Row By Column , Column By 

Column and Strassen. After our experiments we found 

that parallel method is the best method for implementing 

the matrix multiplication. For the future work, we will 

test many other matrix multiplication algorithms and for 

every algorithm we will test the space complexity. 
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