
ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 16

Survey of Matrix Multiplication for Digital Signal

Processing Application

Rajesh Yadav
1
, Prof. Satyarth Tiwari

2

M. Tech. Scholar, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal
1

Guide, Department of Electronics and Communication, Bhabha Engineering Research Institute, Bhopal
2

Abstract— The fundamental function of arithmetic is

Addition which is used widely in various VLSI systems

such as specific application of microprocessors and DSP

architectures. The key task of addition is adding the two

binary numbers; it is the basis of several useful functions

such as division, subtraction, multiplication, addresses

calculation, etc. Matrix Multiplication (MM) is among

the most customary elements in digital applications

comparable to digital signal processing, control units,

and photo processing on account that of its speedy and

fast execution of arithmetic operations in a circuit. MM

acts as the coprocessor that comprises arithmetic

operations, adders, and multiplications. Speed of

processor greatly depends on its multiplier as well as

adder performance. In spite of complexity involved in

MM operation, its implementation is increasing day by

day. Due to which high speed MM architecture become

important. Several MM architecture designs have been

developed to decrease the delay and area.

Keywords— Matrix Multiplication, Digital Signal

Processing, VLSI System

I. INTRODUCTION

We focus on the fundamental task of matrix

multiplication, and use deep reinforcement learning

(DRL) to search for provably correct and efficient matrix

multiplication algorithms. This algorithm discovery

process is particularly amenable to automation because a

rich space of matrix multiplication algorithms can be

formalized as low-rank decompositions of a specific

three-dimensional (3D) tensor, called the matrix

multiplication tensor. This space of algorithms contains

the standard matrix multiplication algorithm and

recursive algorithms such as Stassen‟s, as well as the

(unknown) asymptotically optimal algorithm. Although

an important body of work aims at characterizing the

complexity of the asymptotically optimal algorithm, this

does not yield practical algorithms [1, 2].

We focus here on practical matrix multiplication

algorithms, which correspond to explicit low-rank

decompositions of the matrix multiplication tensor. In

contrast to two-dimensional matrices, for which efficient

polynomial-time algorithms computing the rank have

existed for over two centuries, finding low-rank

decompositions of 3D tensors (and beyond) is NP-hard

and is also hard in practice. In fact, the search space is so

large that even the optimal algorithm for multiplying two

3 × 3 matrices is still unknown. Nevertheless, in a

longstanding research effort, matrix multiplication

algorithms have been discovered by attacking this tensor

decomposition problem using human search, continuous

optimization and combinatorial search [3].

These approaches often rely on human-designed

heuristics, which are probably suboptimal. We instead

use DRL to learn to recognize and generalize over

patterns in tensors, and use the learned agent to predict

efficient decompositions. A score is assigned based on

the number of selected operations required to reach the

correct multiplication result. This is a challenging game

with an enormous action space (more than 1012 actions

for most interesting cases) that is much larger than that of

traditional board games such as chess and Go (hundreds

of actions). Our framework uses a single agent to

decompose matrix multiplication tensors of various sizes,

yielding transfer of learned decomposition techniques

across various tensors. To address the challenging nature

of the game, Alpha Tensor uses specialized neural

network architecture, exploits symmetries of the problem

and makes use of synthetic training games [4, 5].

II. LITERATURE REVIEW

Chen Yang et al. [1], the fields of communication

algorithms, digital signal processing, artificial

intelligence; and so on all make extensive use of floating

point operations. However, system performance and

hardware overhead have been severely limited by the

slow computation speed and the excessive use of

resources. In order to speed up computation and save

resources, floating point arithmetic units must have high

area efficiency. Adder, multiplier, and reciprocal

operator are among the high-performance and area-

efficient floating point arithmetic units discussed in this

paper. A typical communication scenario of 44 matrix

inversion serves as the basis for evaluating the proposed

floating point arithmetic units. Our designs improved

resource overhead and performance, as demonstrated by

the experiments. Our designs use only one-fourth of the

computing latency of Xilinx Vivado IP and save between

20 and 45 percent of resources. Our designs improve area

efficiency by 3.65 times and require only 1/4 the

computing latency of Design Ware IP.

Rongyu Ding et al. [2], due to the limitations of human

perception, internal operations in digital signal

processing and machine learning do not require as much

precision. Since its inception, approximate computing

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 17

has been viewed as an efficient means of balancing

energy with precision. By using radix-8 Booth encoding

on the mantissa part, a new type of approximate floating-

point (FP) multiplier is proposed in this paper. In radix-8

Booth encoding, we devise the triple multiplicand

addition. When compared to the IEEE-754 single

precision FP multiplier, experimental results demonstrate

that the proposed design can achieve significant

reductions in area, delay, and power of up to 66.48%,

23.39%, and 69.02 percent, respectively, while losing

only 0.18% accuracy. When applied to image smoothing

and compression, the proposed multipliers exhibit

minimal quality loss.

Wei Mao et al. [3], optimizing floating-point (FP) dot

product units (DPUs) is becoming increasingly important

for training deep learning models and high-performance

scientific computing. A reconfigurable multiple-precision

DPU operation has the potential to significantly reduce

the cost of area and power due to the various precision

requirements of applications. However, the current

approaches may leave hardware resources unused for

operations of varying precisions and result in redundant

bits for unit multipliers. For high-performance computing

(HPC) applications, a reconfigurable multiple-precision

FP DPU design is proposed in this paper. The FP DPU

can be changed in the following ways. For three-mode

operations, a bit-partitioning technique with a

programmable mixed-precision multiplier is provided to

reduce the number of redundant bits: 20 operations with

half-precision Dot Product (DP), 5 with single precision

DP, and 1 with double precision DP. Without consuming

hardware resources, any mode can be executed in two

clock cycles. Using simulation results and the UMC 55-

nm process, the proposed design is realized. Contrasted

and the current numerous accuracy FP strategies, the

proposed DPU accomplishes 88.9% and 35.8% region

saving execution for FP16 and FP32 activities,

individually. Furthermore, when compared to fixed FP32

and FP64 operations, the proposed reconfigurable DPU

can accelerate maximum throughput rates by up to 4 and

20 percent when used in benchmarked HPC applications

with multiple precisions.

Rahul Rathod et al. [4], signal processing and

multimedia computations make use of floating point

numbers. When compared to addition and subtraction,

the process of multiplication necessitates more

processing time and hardware resources. The system's

execution time is determined by the multiplier processing

speed because it consumes the majority of time. On

VIVADO DESIGN SUITE 2018.3, Vedic multipliers,

array multipliers, and CIFM multipliers are used to

implement complex floating point multiplication, and

their performance is compared in this paper.

S. Ross Thompson et al. [5], complete implementation

that works with both normalized and denormalized

numbers is also included in this paper, along with a

brand-new algorithm for IEEE 754 Floating Point

Multiplication. Based on injection rounding, the new

rounder injects two injections into the intermediate

product instead. When the product does not overflow, the

first injection handles the situation, while the second

injection handles the situation. To handle the two

injection constants and reduce hardware duplication, a

special adder is developed. The complex split between

upper and lower bit paths in the single injection rounding

algorithm is eliminated by dual injection rounding [1],

which reduces all three key design targets; delay (1.2

percent), area (6.4 percent), and power. A standard

injection rounder, Synopsys® DesignWareTM, and

Cadence® ChipWareTM are compared to our novel

design.

P.L. Lahari et al. [6], the less-delay-efficient multiplier

and accumulator unit for inner product, filtering [3],

convolution, image and video processing, and other

applications are the subjects of this paper.In a digital

signal processor, the multiply and accumulate unit plays

an important role.On planning this consumes enormous

region since it contains fractional items so Conveyed

Number juggling is considered to work on the speed

however for each additional information size of the ROM

increments dramatically so offset twofold coding

liked.The processor's overall speed will increase by using

offset binary coding with floating point.Xilinx 14.7 ISE

software is used to simulate and synthesize these

designs.When compared to other designs, it achieves the

best area and results with less delay.

Lakshmi kiran Mukkara et al. [7], for implementation

of Low Power VLSI Architectures in the area of Digital

Image Processing applications, Matrix Multiplication is a

key arithmetic operation. To construct VLSI

architectures with Low Power, High Speed and Low

area, Matrix Multiplication design becomes complex. In

this paper, a simple novel VLSI architecture for FPMM

is presented. It is designed by considering Pseudo code

for matrix multiplication, CSD multiplication algorithm

for power reduction, Conventional floating point number

format and Pipelining concept for improving speed.

FPMM design is applicable for any arbitrary size of

matrices by following matrix rules.

Soumya Havaldar et al. [8], gives an FPGA Based High

Speed IEEE-754 Double Precision Floating Point

Multiplier Using Verilog. This paper has implemented

DPFP Multiplier using parallel Adder. A high speed

floating point double precision multiplier is implemented

on a Virtex-6 FPGA. In addition, the proposed design is

compliant with IEEE-754 format and handles over flow,

under flow, rounding and various exception conditions.

The design achieved the operating frequency of 414.714

MHz with an area of 648 slices.

Ragini Parte et al. [9], IEEE point number-crunching

has an immense application in DSP, advanced PCs,

robots because of its capacity to speak to little numbers

https://ieeexplore.ieee.org/author/37085450544

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 18

and huge numbers and in addition marked numbers and

unsigned numbers. Disregarding unpredictability

included in gliding point number juggling, its usage is

expanding step by step. Here we break down the impacts

of utilizing three unique sorts of adders while figuring

the single accuracy and twofold exactness skimming

point increase. We additionally exhibit the increase of

significand bits by disintegration of operands strategy for

IEEE 754 standard.

III. DIFFERENT TYPES OF ADDER

Parallel Adder:-

Parallel adder can add all bits in parallel manner i.e.

simultaneously hence increased the addition speed. In

this adder multiple full adders are used to add the two

corresponding bits of two binary numbers and carry bit

of the previous adder. It produces sum bits and carry bit

for the next stage adder. In this adder multiple carry

produced by multiple adders are rippled, i.e. carry bit

produced from an adder works as one of the input for the

adder in its succeeding stage. Hence sometimes it is also

known as Ripple Carry Adder (RCA). Generalized

diagram of parallel adder is shown in figure 3.

Figure 3: Parallel Adder (n=7 for SPFP and n=10 for DPFP)

An n-bit parallel adder has one half adder and n-1full

adders if the last carry bit required. But in 754

multiplier‟s exponent adder, last carry out does not

required so we can use XOR Gate instead of using the

last full adder. It not only reduces the area occupied by

the circuit but also reduces the delay involved in

calculation. For SPFP and DPFP multiplier‟s exponent

adder, here we Simulate 8 bit and 11 bit parallel adders

respectively as show in figure 4.

Figure 4: Modified Parallel Adder (n=7 for SPFP and n=10 for

DPFP)

Carry Skip Adder:-

This adder gives the advantage of less delay over Ripple

carry adder. It uses the logic of carry skip, i.e. any

desired carry can skip any number of adder stages. Here

carry skip logic circuitry uses two gates namely “and

gate” and “or gate”. Due to this fact that carry need not to

ripple through each stage. It gives improved delay

parameter. It is also known as Carry bypass adder.

Generalized figure of Carry Skip Adder is shown in

figure 5.

Figure 5: Carry Skip Adder

Carry Select Adder:-

Carry select adder uses multiplexer along with RCAs in

which the carry is used as a select input to choose the

correct output sum bits as well as carry bit. Due to this, it

is called Carry select adder. In this adder two RCAs are

used to calculate the sum bits simultaneously for the

same bits assuming two different carry inputs i.e. „1‟

and „0‟. It is the responsibility of multiplexer to choose

correct output bits out of the two, once the correct carry

input is known to it. Multiplexer delay is included in this

adder. Generalized figure of Carry select adder is shown

in figure 3.9. Adders are the basic building blocks of

most of the ALUs (Arithmetic logic units) used in Digital

signal processing and various other applications. Many

types of adders are available in today‟s scenario and

many more are developing day by day.

Figure 6: Carry Select Adder

Half adder and Full adder are the two basic types of

adders. Almost all other adders are made with the

different arrangements of these two basic adders only.

Half adder is used to add two bits and produce sum and

carry bits whereas full adder can add three bits

simultaneously and produces sum and carry bits.

IV. CONCLUSION

When you want to solve any problem, try to choose the

best method that consumes less space and time to execute

efficiently. For matrix multiplication, we tested some

methods Row by Row, Row By Column , Column By

Column and Strassen. After our experiments we found

that parallel method is the best method for implementing

the matrix multiplication. For the future work, we will

test many other matrix multiplication algorithms and for

every algorithm we will test the space complexity.

ISSN: 2321–7529 (Online) || ISSN: 2321–7510 (Print) International Journal of Research and Technology Volume 12, Issue 1, January_2024

www.ijrt.org 19

REFRENCES

[1] Chen Yang;Siwei Xiang;Jiaxing Wang;Liyan Liang,

“A High Performance and Full Utilization Hardware

Implementation of Floating Point Arithmetic Units”,

28th IEEE International Conference on Electronics,

Circuits, and Systems (ICECS), IEEE 2021.

[2] Rongyu Ding;Yi Guo;Heming Sun;Shinji Kimura,

“Energy-Efficient Approximate Floating-

Point Multiplier Based on Radix-8 Booth Encoding”,

IEEE 14th International Conference on ASIC

(ASICON), IEEE 2021.

[3] Wei Mao;Kai Li;Xinang Xie;Shirui Zhao;He Li;Hao

Yu, “A Reconfigurable Multiple-Precision Floating-

Point Dot Product Unit for High-Performance

Computing”, Design, Automation & Test in Europe

Conference & Exhibition (DATE), IEEE 2021.

[4] Rahul Rathod;P Ramesh;Pratik S Zele;Annapurna K

Y, “Implementation of 32-Bit

Complex Floating Point Multiplier Using

Vedic Multiplier, Array Multiplier and Combined

integer and floating point Multiplier (CIFM)”,

International Conference for Innovation in

Technology (INOCON), IEEE 2020.

[5] S. Ross Thompson;James E. Stine, “A Novel

Rounding Algorithm for a High Performance IEEE

754 Double-Precision Floating-Point Multiplier”,

38th International Conference on Computer Design

(ICCD), IEEE 2020.

[6] P.L. Lahari;M. Bharathi;Yasha Jyothi M Shirur,

“High Speed Floating Point Multiply Accumulate

Unit using Offset Binary Coding”, 7th International

Conference on Smart Structures and Systems

(ICSSS), IEEE 2020.

[7] Lakshmi kiran Mukkara and K.Venkata Ramanaiah,

“A Simple Novel Floating Point Matrix Multiplier

VLSI Architecture for Digital Image Compression

Applications”, 2nd International Conference on

Inventive Communication and Computational

Technologies (ICICCT 2018) IEEE.

[8] Soumya Havaldar, K S Gurumurthy, “Design of

Vedic IEEE 754 Floating Point Multiplier”, IEEE

International Conference On Recent Trends In

Electronics Information Communication Technology,

May 20-21, 2016, India.

[9] Ragini Parte and Jitendra Jain, “Analysis of Effects of

using Exponent Adders in IEEE- 754 Multiplier by

VHDL”, 2015 International Conference on Circuit,

Power and Computing Technologies [ICCPCT] 978-

1-4799-7074-2/15/$31.00 ©2015 IEEE.

[10] Ross Thompson and James E. Stine, “An IEEE 754

Double-Precision Floating-Point Multiplier for

Denormalized and Normalized Floating-Point

Numbers”, International conference on IEEE 2015.

[11] M. K. Jaiswal and R. C. C. Cheung, “High

Performance FPGA Implementation of Double

Precision Floating Point Adder/Subtractor”, in

International Journal of Hybrid Information

Technology, vol. 4, no. 4, (2011) October.

[12] B. Fagin and C. Renard, "Field Programmable Gate

Arrays and Floating Point Arithmetic," IEEE

Transactions on VLS1, vol. 2, no. 3, pp. 365-367,

1994.

[13] N. Shirazi, A. Walters, and P. Athanas, "Quantitative

Analysis of Floating Point Arithmetic on FPGA

Based Custom Computing Machines," Proceedings of

the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM"95), pp.155-162, 1995.

[14] Malik and S. -B. Ko, “A Study on the Floating-Point

Adder in FPGAs”, in Canadian Conference on

Electrical and Computer Engineering (CCECE-06),

(2006) May, pp. 86–89.

[15] D. Sangwan and M. K. Yadav, “Design and

Implementation of Adder/Subtractor and

Multiplication Units for Floating-Point Arithmetic”,

in International Journal of Electronics Engineering,

(2010), pp. 197-203.

[16] L. Louca, T. A. Cook and W. H. Johnson,

“Implementation of IEEE Single Precision Floating

Point Addition and Multiplication on FPGAs”,

Proceedings of 83rd IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM‟96), (1996),

pp. 107–116.

[17] Jaenicke and W. Luk, "Parameterized Floating-Point

Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol.

2, (2001), pp. 897-900.

[18] Lee and N. Burgess, “Parameterisable Floating-point

Operations on FPGA”, Conference Record of the

Thirty-Sixth Asilomar Conference on Signals,

Systems, and Computers, (2002).

[19] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient

Implementation of Floating Point Multiplier”, Saudi

International Electronics, Communications and

Photonics Conference (SIECPC), (2011) April 24-26,

pp. 1-5.

https://ieeexplore.ieee.org/author/37291794500
https://ieeexplore.ieee.org/author/37089234549
https://ieeexplore.ieee.org/author/37089233355
https://ieeexplore.ieee.org/author/37089167176
https://ieeexplore.ieee.org/author/37086589752
https://ieeexplore.ieee.org/author/38477683400
https://ieeexplore.ieee.org/author/37085450544
https://ieeexplore.ieee.org/author/37088890980
https://ieeexplore.ieee.org/author/37088891842
https://ieeexplore.ieee.org/author/37088802221
https://ieeexplore.ieee.org/author/37088914056
https://ieeexplore.ieee.org/author/37275013000
https://ieeexplore.ieee.org/author/37275013000
https://ieeexplore.ieee.org/author/37088214478
https://ieeexplore.ieee.org/author/37088649423
https://ieeexplore.ieee.org/author/37088650277
https://ieeexplore.ieee.org/author/37088650820
https://ieeexplore.ieee.org/author/37088650820
https://ieeexplore.ieee.org/author/37088493685
https://ieeexplore.ieee.org/author/37273496500
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/document/9283509/
https://ieeexplore.ieee.org/author/37088443206
https://ieeexplore.ieee.org/author/37087502574
https://ieeexplore.ieee.org/author/37085570909

