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Abstract— Discrete wavelet transform (DWT) provides an 

efficient computing method for sparse representation of wide 

class of signals. The DWT only analyzes the lower frequency 

subbands, implicitly ignoring any information embedded in the 

higher frequency sub-bands. There are few applications where 

signal information equally distributed in entire signal spectrum 

such as ultrasound images, ECG and EEG images. The DWT is 

expressed in a generalized form know as discrete wavelet 

packet transform (DWPT) which analyzes both the low and 

high sub-bands with equal priority at every decomposition 

level. The DWT is currently implemented in very large scale 

integration (VLSI) system to meet the space-time requirement 

of various real-time applications. Several design schemes have 

been suggested for efficient implementation of 2-D DWT in a 

VLSI system. In this paper is study of DWT and analysis of 

best technique for design 2-D DWT.  
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I. INTRODUCTION  

The wavelet transform (WT) produces a time-frequency 

representation of the signal. It was developed to 

overcome the limitation of the short time Fourier 

transform (STFT), which can also be used to analyze 

non-stationary signals. While STFT gives a constant 

resolution at all frequencies, the WT uses multi-

resolution technique by which different frequencies are 

analyzed with different resolutions. The wavelet analysis 

is similar to the STFT analysis. The signal to be analyzed 

is multiplied with a wavelet function similar to the 

multiplication of the window function in STFT, and then 

the transform of each segment is computed. A wavelet is 

a short oscillating function which contains both analysis 

function and the window function. In WT, time 

information is obtained by shifting the wavelet over the 

signal, while the frequencies are changed by contraction 

and dilatation of the wavelet function. The continuous 

wavelet transform (CWT) retrieves the time-frequency 

content information with an improved resolution 

compared to the STFT [1]. Discrete wavelet transform 

(DWT) is a mathematical tool that provides a new 

method for signal processing and decomposes a discrete 

signal in the time domain by using dilated / contracted 

and translated versions of a single basis function, named 

as prototype wavelet [2, 3].  

DWT offers wide variety of useful features over other 

unitary transforms like discrete Fourier transforms 

(DFT), discrete cosine transform (DCT) and discrete sine 

transform (DST). Some of these features are; adaptive 

time-frequency windows, lower aliasing distortion for 

signal processing applications, efficient computational 

complexity and inherent scalability. Due to these features 

one dimensional (1-D) DWT and two dimensional (2-D) 

DWT are applied in various application such as 

numerical analysis, signal analysis and image coding.  

DWT provides an efficient computing method for sparse 

representation of wide class of signals. The DWT only 

analyzes the lower frequency sub-bands, implicitly 

ignoring any information embedded in the higher 

frequency components [4]. In other word, DWT puts 

more emphasis on the low frequencies by continuously 

decomposing the signal in the low-frequency band. There 

are few applications where signal information equally 

distributed the entire signal spectrum such as ultrasound 

images, ECG and EEG images etc. In such cases, DWT 

is not able to analyze the signal to capture the required 

frequency component of interest. The DWT is expressed 

in a generalized form know as discrete wavelet packet 

transform (DWPT) which uses a generalized tree 

structure instead of a dyadic tree structure of DWT. The 

DWPT give equal priority to all signal components and 

analyzes both the low-pass and high-pass sub-bands at 

every decomposition level. As a result, DWPT provides a 

better signal analysis enabling it to achieve higher 

compression ratio and better scaling effects within an 

analysis framework compared to DWT. DWPT is used in 

wide range of bio-medical applications, medical imaging, 

healthcare applications [5, 6]. Few algorithms and 

computation schemes have been suggested during last 

three decades for efficient hardware implementation of 

DWT and DWPT. 

 

II. LITERATURE REVIEW 

Yuan-Ho Chen et al. [1], a brand-new QRS complex 

detection algorithm based on the discrete wavelet 

transform (DWT) is presented in this paper on a very 

large-scale integration chip. The first step in many 

aspects of electrocardiogram (ECG) analysis is to detect 

the QRS complex. Since the RR interval is used to 

evaluate heart rate variability (HRV), for instance, an 

effective QRS detection algorithm would have a 

significant impact on the subsequent HRV analysis steps. 

On the other hand, this study proposes a simple, 

dependable, low-power, and cost-effective QRS 

detection method and its VLSI implementation because 

wireless monitoring is still prohibitively expensive and 

reducing its cost and power consumption requires 

reducing the complexity of the algorithm. The quadratic 
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spline wavelet transform based wavelet packet 

decomposition is utilized in this instance to carry out the 

task of QRS complex detection. A novel noise level 

detection is carried out following a four-level DWT 

decomposition in order to improve the QRS complex. 

The proposed noise level detector would first determine 

the product of two of the four wavelet coefficients. 

Consequently, the processing stage also includes the 

execution of decision rules, the adaptive thresholding 

scheme, and the product of the two chosen wavelet 

coefficients. Manufactured on a 0.18-μm integral metal 

oxide semiconductor, the 1-KHz processor draws just 4.2 

μW of force, and the chip region is just 0.83 mm2 . 

Additionally, 48 recordings from the MIT-BIH 

arrhythmia database are used to confirm the proposed 

method's detection accuracy (Se = 99.57%, +P=99.59%), 

indicating that the proposed QRS detector may be able to 

detect QRS complexes with high accuracy and low cost. 

 

Jhilam Jana et al. [2], for the one-dimensional (1-D) 

and two-dimensional (2-D) discrete wavelet transform 

(DWT), a comprehensive analysis of VLSI architectures 

is presented in this paper. Additionally, three related 

architectures are proposed. There are three types of 1-D 

DWT and inverse DWT (IDWT) architectures: B-spline, 

lifting, and convolutional models. They are talked about 

with regards to equipment intricacy, basic way, and 

registers. Concerning the 2-D DWT, the most pressing 

issues are the substantial amount of frame memory 

access and die area occupied by the embedded internal 

buffer. Different external memory scan techniques are 

used to classify and examine the two-dimensional DWT 

architectures. The internal buffer's implementation issues 

are also discussed, and some real-world experiments 

demonstrate that the internal buffer's area and power are 

highly correlated with memory technology and working 

frequency rather than just the required memory size. The 

overlapped stripe-based scan method and the B-spline-

based IDWT architecture are also suggested in addition 

to the analysis. Last but not least, we suggest a one-level 

2-D DWT architecture that takes full advantage of the 

analysis's many advantages and is both adaptable and 

effective. 

 

W. Yan et al. [3], a more accurate and resource-efficient 

"QRS" detector is what we propose in this paper. We 

used a pipeline-scheduled, reconfigurable time-sharing 

computation unit inspired by the folded architecture's 

approach. We developed the position calibration unit 

(PCU) on the basis of the data compression method in 

order to more precisely locate the position of the "R" 

peak and to reduce the need for additional hardware. 

Using the Verilog programming language, the proposed 

architecture was implemented on the Xilinx Zynq-7000. 

On the MIT-BIH database, the proposed architecture has 

the best performance when compared to current designs, 

with a sensitivity of 99.76 percent, a precision of 99.85 

percent, and a detection error rate of 0.40 percent. 

Additionally, the proposed architecture reduces power 

consumption, storage memory, and computing resources 

by 13.35 percent, 1.28 percent, and 4.35 percent, 

respectively. 

 

Z. Zhang et al. [4], a real-time QRS-detection algorithm 

and a dynamic tracking-based 12-bit successive 

approximation register (SAR) ADC are proposed. There 

are two tracking windows in the dynamic tracking 

algorithm that are right next to the prediction interval. 

The prediction code is updated and the subrange interval 

is automatically adjusted by this algorithm, which is able 

to locate the variation range of the input signal. Real-time 

QRS-detector and synchronous time sequential ADC are 

incorporated into the QRS-complex detection algorithm. 

The chip is made using a 0.6 V supply and the standard 

0.13 m CMOS process. At 10k Hz sample rate and 41.5 

Hz sinusoid input, measurements reveal that the proposed 

ADC has an effective number of bits (ENOB) of 10.72 

and a spur-free dynamic range (SFDR) of 79.63 dB. The 

limits of the DNL and INL are -0.67/1.43 LSB and -

0.62/0.62. In the ideal scenario, the ADC achieves a FoM 

of 48 fJ/conversion step. Additionally, the prototype 

successfully extracts the heartbeat signal when subjected 

to ECG signal input. 

 

J. Li et al. [5], this paper introduces power reduction 

strategies and considerations at the system level of 

design, where we have the greatest potential to influence 

power, with the goal of lowering the power consumption 

of wearable healthcare devices based on 

electrocardiography. It focuses on algorithm design and 

implementation, data acquisition, and transmission with 

limited resources in particular. On the basis of metrics 

like sensitivity, positive predictivity, power consumption, 

parameter selection, and time delay, nine existing 

algorithms are thoroughly examined for their suitability 

for on-sensor QRS feature detection. A direct memory 

access (DMA) list approach and low-level register 

manipulations for task delegation are used to optimize 

data acquisition on CPU-based IoT systems and reduce 

current consumption by a factor of three. Additionally, 

the batch size, buffer size, sampling rate, and acquisition 

data rate are all optimized. The impact of on-sensor 

versus off-sensor processing is investigated in order to 

cut down on the amount of power required for data 

transmission. While the experiments in this work were 

carried out on a generic low-power wearable platform 

and focused on CPU-based systems, the design 

optimization and considerations suggested in this work 

could be extended to custom designs, which would make 

it possible to conduct additional research into optimizing 

the QRS detection algorithm for wearable devices. 

 

B. Mishra et al. [6], the vital data contained in an 

electrocardiogram (ECG) signal can be used to identify a 

variety of arrhythmia conditions. In this work, we have 

fostered a calculation to identify the R pinnacles of the 

ECG signal in light of the Skillet Tompkins Calculation. 

The work has also been improved to a first-level 

approximation for the purpose of identifying various 

arrhythmia conditions. The Q and S points that are based 
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on the R-peaks are also found in order to compute the 

QRS complex. The MIT/BIH arrhythmia database is used 

as a reference for R peak annotations and as a source for 

ECG signals in order to verify that the proposed 

algorithm works. The metric of False Detection Rate 

(FDR) of 1.289%, Sensitivity of 99.492%, and Positive 

Predictivity of 99.293% is provided by the algorithm. In 

order to extract the P and T waves from the signal, the 

entire QRS complex is reset to zero after it has been 

detected. As a result, this work offers a unique strategy 

for real-time P, Q, R, S, and T wave detection of an ECG 

signal. To demonstrate the approach's efficacy, the 

algorithm is further ported to a low-cost ECG monitoring 

patch. 

 

G. Da Poian et al. [7], have wireless body sensor 

networks, compressive sensing (CS) has recently been 

used as a low-complexity compression framework for 

long-term electrocardiogram (ECG) signal monitoring. 

ECG signals can be recorded over a long period of time 

for diagnostic purposes and to track the progression of a 

number of common diseases. By calculating the distance 

between QRS complexes (R-peaks) in the ECG signal, 

beat-to-beat intervals, in particular, can be derived from 

the signal and provide important clinical information. For 

uncompressed ECG, a variety of R-peak detection 

techniques are available. However, with relatively 

complex optimization algorithms and possibly a 

significant amount of energy consumption, signal 

reconstruction can be carried out with compressed sensed 

data. Without reconstructing the entire signal, this paper 

addresses the issue of estimating heart rate from CS ECG 

recordings. Methods: We consider a framework in which 

CS linear measurements are used to represent the ECG 

signals. The correlation between the compressed ECG 

and a known QRS template is used to estimate the QRS 

locations in the compressed domain. The proposed 

method proves to be very convenient for low-power real-

time applications because it does not require 

reconstruction. 

 

T. Tekeste et al. [8], Internet of Things (IoT) medical 

wearable devices require an ultra-low power 

electrocardiogram (ECG) processing architecture that is 

accurate enough. An innovative real-time QRS detector 

and an ECG compression architecture for IoT healthcare 

devices are presented in this paper. An A-CLT, or 

absolute-value curve length transform, is proposed to 

effectively improve QRS complex detection while using 

as few hardware resources as possible. Only adders, 

shifters, and comparators are required in the proposed 

architecture, which eliminates multipliers altogether. 

QRS recognition was achieved by involving versatile 

limits in the A-CLT changed ECG signal, and 

accomplished a responsiveness of 99.37% and the 

predictivity of 99.38% while approved utilizing 

Physionet ECG data set. The proposed architecture also 

includes a lossless compression method that makes use of 

entropy encoding and the ECG signal's first derivative. 

Utilizing the MIT-BIH database, the evaluation produced 

an average compression ratio of 2.05. With minimal 

hardware resources, the proposed QRS detection 

architecture addresses nearly all ECG signal artifacts, 

including baseline drift, low-frequency noise, and high-

frequency interference. 

 

III. COMPUTATION SCHEME OF DWT 

DWT decomposes input signal spectrum into two sub-

bands. These two sub-bands are known as low-pass sub-

band and high-pass sub-band. The input signal is filtered 

by a lowpass filter to obtain the low-pass sub-band where 

the same input signal is filtered by the highpass filter to 

obtain the high-pass sub-band. The pair of low-pass and 

high-pass filters form a quadrature mirror filter (QMF) 

for perfect signal reconstruction. The low-pass and high-

pass filters are realized using short length finite impulse 

response (FIR) filter. As shown in Figure 1, the low-pass 

filter and high-pass filter forms a two-channel filter bank 

and performs down-sampled filter computation on the 

input signal to obtained the low-pass subband output 

(ul(n)) and high-pass sub-band output (uh(n)). The 1-D 

DWT computing unit is represented by a two-channel 

filtering unit comprised of a low-pass filter (LPF), one 

high-pass filter (HPF)), and a pair of down samplers. The 

low-pass and high-pass filter computation of DWT are 

performed using (i) convolution scheme and (ii) lifting 

scheme.  

 

 
Figure 1: Block diagram of filtering unit (FU) of 1-D 

DWT 

 

DWT computation using convolution scheme:- In 

convolution scheme, the low-pass and high-pass filter 

output of an filtering unit (FU) are calculated using the 

expressions 

 

 
Where, k1 is the length of low-pass filter, k2 is the length 

of high-pass filter, x(n) is the input signal. ul(n) and 

uh(n) are the low-pass and high-pass subband 

components, respectively. h(n) and g(n) are, respectively, 

low-pass and high-pass filter coefficients of wavelet 

filter. Wavelet filters are classified as, orthogonal and bi-

orthogonal wavelets. The wavelet filter coefficients 

satisfy the orthogonal property is known as orthogonal 
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wavelet, where the biorthogonal wavelet filter 

coefficients satisfy the orthonormal property in addition 

to orthogonal property. The orthogonal low-pass and 

high-pass filters are, asymmetric and have same lengths, 

where the low-pass and the high-pass filters of bi-

orthogonal wavelet are symmetric and different in length. 

DWT computation using lifting scheme:- The lifting 

scheme was proposed by Sweldens (1996). According to 

lifting scheme, the low-pass and high-pass filter 

computation of 1-D DWT are decomposed into lifting 

steps. The basic principle of lifting scheme is to factorize 

the polyphase matrix (P(z)) of the wavelet filters 

comprising of low-pass and high-pass bi-orthogonal filter 

into a sequence of alternating upper and lower triangular 

matrices and a constant diagonal matrix. This leads to 

wavelet computation by means of banded-matrix 

multiplications [8, 9]. The lifting based DWT has many 

useful properties such as symmetric forward and inverse 

transform, in-place computation, integer-to-integer 

transform and requires less computation than convolution 

based DWT [10]. Let H(z) and G(z) are the system 

function of low-pass and high-pass bi-orthogonal wavelet 

filters. H(z) can be decomposed into He(z) and Ho(z), 

where He(z) and Ho(z) represents the system function of 

even and odd part of the impulse response h(n) of low-

pass wavelet filter. Similarly, Ge(z) and Go(z) represents 

the system function of even and odd part of the impulse 

response g(n) of high-pass wavelet filter. The system 

function (P(z)) of FU can be expressed as 

 

 
 

IV. VLSI SYSTEM 

DWT algorithms can be implemented in a programmable 

system such as general purpose computer or digital signal 

processor. These programmable systems use a fixed 

computing architecture and perform arithmetic 

operations sequentially and they offer limited throughput 

for computationally intensive algorithms such as DWT. 

However, DWT algorithms can be implemented general 

purpose programmable systems for high-throughput 

applications employing parallel processing. Engaging 

general purpose programmable system to perform a 

specific task is not cost-effective. Besides, general 

purpose computing systems occupy substantial amount of 

space and consumes power which makes the deployment 

of signal processing system difficult in a resource 

constrained and hostile environment. In recent years, 

there is tremendous growth of portable and wireless 

devices in various applications. Portable and wireless 

devices are resource and power constrained, and uses 

complex signal processing algorithms including DWT. 

Besides, high-throughput rate, low-area and low-power 

are considered the key requirements of systems 

implementing digital signal processing algorithms 

especially for portable and wireless devices which are 

battery operated. Therefore, realization of DWT in 

resource and power constrained environment and 

delivering real-time performance is a challenging task for 

portable and wireless devices. 

With the advancement of VLSI technology, high density 

and low-cost memory chips are rapidly evolving in recent 

years. Field programmable gate array (FPGA) is a 

programmable logic device. FPGA offers high capacity 

programmable devices for realization of complex DSP 

algorithms. FPGA uses a fixed architecture and offers 

specific types of memory and logic resources for 

realization of digital systems. On the other hand, modern 

synthesis tools offer a wide range of logic and memory 

components for realization of application specific 

integrated circuit (ASIC) systems. Therefore, ASIC 

based dedicated system offers higher-performance and 

consumes less-power compared to FPGA based 

dedicated systems. However, ASIC system does not 

allow reusing its resources through programming unlike 

the FPGA. Therefore, FPGA offers rapid prototyping the 

DSP algorithm with lesser performance than the ASIC. 

In general ASIC implementation is preferred for 

computation intensive algorithms and high volume 

applications. 

 

V. IMAGE COMPRESSION UISNG DWT 

In the course of past few years, the wavelet transform has 

gained massive amounts of popularity in the research 

area and commercial industries, because of their 

powerful image compression techniques. Numerous 

wavelets based compression techniques, also known as 

sub-band coding, are more powerful and popular than 

DCT algorithms. As the image is not required to be 

divided in to blocks, the wavelet theory has advantage 

over signal distortion, due to variable length of wavelet 

coding schemes. Wavelet-based coding offers sequential 

image transmission. They are more resilient to decoding 

errors and transmission errors. The wavelets are highly 

suitable for application which requires good flexibility of 

scaling and reasonable amount of distortion. This is 

because of the characteristic multi resolution nature of 

wavelets. 

 

 
Figure 2: (a) Original Image, and (b) Reconstructed 

Image with only DC components 
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VI. CONCLUSION 

DWT provides an efficient computing method for sparse 

representation of wide class of signals. The DWT only 

analyzes the lower frequency sub-bands, implicitly 

ignoring any information embedded in the higher 

frequency components. There are few applications where 

signal information equally distributed the entire signal 

spectrum such as ultrasound images, ECG and EEG 

images etc. The DWT is expressed in a generalized form 

know as discrete wavelet packet transform (DWPT) 

which analyzes both the low-pass and high-pass 

subbands in equal priority at every decomposition level. 

As a result, DWPT provides a better signal analysis 

enabling it to achieve higher compression ratio and better 

scaling effects within an analysis framework compared to 

DWT. The DWT is widely used in various signal and 

image processing applications such as image coding, 

image compression and speech coding etc. DWPT is 

used in wide range of bio-medical applications, medical 

imaging, and healthcare applications. Efficient 

realization of DWT/DWPT in dedicated VLSI system 

has great practical interest for low-power and resource 

constrained applications. Several computation schemes 

and architectural designs have been suggested during last 

three decades for efficient hardware implementation of 

DWT and DPWT. 
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