
ISSN : 2321 – 7529 (Online) | ISSN : 2321 – 7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

www.ijrt.org 1

FPGA Implementation of Optimized Decimal Floating Point Multiplier using Binary Integer

Decimal Encoding
1
Rahul Shrivastava ,

2
Prof. S.G. Kelarkar,

3
Prof. N.K. Mittal

1
Dept. of Electronics and Communication Engineering, Oriental Institute of Science and Technology,Bhopal, India
2
HOD, Electronics and Communication Engineering, Oriental Institute of Science and Technology,Bhopal, India

3
Principal, Oriental Institute of Science and Technology,Bhopal, India

Email: rahul.stva@gmail.com

Abstract — Binary floating point arithmetic is popularly used in

hardware designs. But there are certain flaws in binary floating

point arithmetic (BFP) namely; rounding error, error is

representing decimal fractions etc. To reduce these errors

decimal floating point arithmetic is used. In this paper an

optimized approach to implement IEEE complaint binary integer

decimal encoding based multiplier unit is presented. The

proposed optimizations are given to reduce the delay and

dynamic power consumption.

Key Words—BID Encoding, Floating point multiplication, low

power, rounding

I. INTRODUCTION

The binary floating point (BFP) arithmetic has certain flaws

namely; it cannot provide correct decimal rounding and cannot

precisely represent some decimal fractions such as 0.001,

0.0475 etc [1]. There are many applications where a precision is

required such as billing, insurance, currency conversion,

banking and some scientific applications. European Union

requires that currency conversion to and from EURO is to be

calculated to six decimal digits [2]. One study estimates that

errors generating from BFP arithmetic can sum up to a yearly

billing of over dollar 5 million for a large billing organization

[3]. Therefore decimal floating point (DFP) arithmetic becomes

very important in many current and future applications as it has

ability to represent decimal fractions precisely. DFP arithmetic

also has the ability to provide correct decimal rounding that will

mimic the manual rounding.

Applications which cannot tolerate errors generating from

BFP arithmetic, these application use software platforms to

perform DFP arithmetic [1]. There are many software packages

which are available for example: the java BigDecimal library

[5] and IBM’s decNumber library [4]. Also Intel published

results for a decimal arithmetic library which uses Binary

integer decimal (BID) encoding. These software packages are

good enough for current applications, but trends towards

globalization and e-commerce are increasing, so faster response

of these systems is required. Software designs to these systems

may be inadequate with the increasing performance demands of

future systems. So hardware implementation of these systems is

the need of the hour.

In 2008, the IEEE 754-1985 floating point standard has

been revised and the new standard called the IEEE 754-2008

floating point standard was setup [6], which includes

specifications for DFP formats, encoding and operations. The

IEEE 754-2008 standard includes an encoding format for DFP

numbers in which the significand and the exponent (and the

payloads of NaNs) can be encoded in two ways namely; binary

encoding and decimal encoding. [7]

 Both the encoding formats break a number into a sign bit s,

an exponent E, and a p-digit significand c. The value encoded is

(−1)
s
× 10

E
× c. In both formats the range of possible values is

identical, but the significand c is encoded differently. In the

decimal encoding, it is encoded as a series of p decimal digits

using the densely packed decimal encoding (DPD). This makes

conversion to decimal form efficient, but it requires a special

decimal ALU to process and it increases the hardware cost and

delay of design. In the binary encoding also known as binary

integer decimal (BID) encoding, it is encoded as a binary

number. The BID encoding method is simple to implement as

compared to DPD. It also requires less hardware also the delay

performance of the design improves. [7]

In this paper a floating point multiplier unit is proposed.

This floating point multiplier unit is IEEE P754 - 2008

complaint and based on binary integer decimal (BID) encoding

for DFP arithmetic. The proposed floating point multiplier unit

uses reciprocal multiplication to perform rounding and it is

optimized for reduced delay and power consumption.

II. DECIMAL FLOATING POINT REPRESENTATION

In IEEE P754-2008, the value of a finite decimal floating

point number is given by:

(−1)� × 10	
��
� × �

Where S is the sign bit, ‘0’ represents positive (+) number and

‘1’ represents negative (-) number, E is the biased exponent,

bias is a constant value that makes E a non-negative value and

C is the significand. The IEEE 754 – 2008 specifies two

methods of representing the significands of these numbers

namely: Binary Integer Decimal (BID) [8] and Densely Packed

Decimal (DPD) [9]. In BID encoding the significand is

represented by an unsigned binary integer and in case of DPD

encoding the significand is represented by unsigned decimal

integer, a group of 10 bits is used to represent three decimal

digits [9]. Sometimes the BID is called binary number and DPD

is called as decimal number. For example 9.94 is represented as

994 x 10
-3

 in floating point number system, now the significand

994 can be represented using either BID or DPD encoding.

ISSN : 2321 – 7529 (Online) | ISSN : 2321 – 7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

www.ijrt.org 2

Three types of numbers are defined in IEEE P754 - 2008,

decimal32 where the number is represented by 32 bits,

decimal64 in this the number is represented by 64 bits and

decimal128 where 128 bit are used to represented the number.

In this paper decimal64 number is used, in this format 54 bits

are used to encode the significand, remaining 10 bits are used to

encode the sign bit and biased exponent. The maximum

significand supported by decimal64 is 10
16

 – 1, this number is

less than 2
54

. More details of BID encoding are given in [10].

III. BID MULTIPLICATION TECHNIQUE

A basic BID multiplication algorithm is shown in figure 1

Figure 1: Basic floating point multiplication algorithm

To understand the hardware implementation of the BID

multiplier, we first discuss a basic algorithm to multiply BID

numbers. In IEEE 754-2008 format, the representation of a

finite DFP number consists of three encoded values (S, E-bias,

C), where S is the sign bit, E is a biased exponent, bias is a

constant value that makes E nonnegative, and C is the

significand. In the following discussion, A and B are the IEEE

754-2008 input operands, and (AS, AE, AC) and (BS, BE, BC) are

their respective triples. The basic BID multiplication algorithm

consists of four important steps and is shown in Figure 1. The

IEEE 754-2008 BID-encoded operands are decoded to get their

signs, biased exponents, and significands. Next, the

significands, AC and BC, are multiplied to obtain the

intermediate product, IPC. In parallel, the exponents are added

and the bias is subtracted to produce the intermediate exponent,

IPEXP. In the third step of the algorithm, IPC is tested to

determine the need of rounding and the number of digits to be

rounded. If the number of decimal digits in IPC is not greater

than the result precision, p, rounding is not needed, and the

multiplication operation is finished. Otherwise, IPC must be

rounded and IPEXP must be adjusted. Finally, the sign, biased

exponent, and significand of the result are packed to obtain the

IEEE 754-2008 BID-encoded result of the multiplication. As an

example of how BID multiplication is performed, consider the

decimal64 BID-encoded operands of A =

32638D7EA4C6800316 and B = 338000000000001916 as inputs

to the multiplication, where the subscript 16 indicates

hexadecimal digits. Numbers without subscripts have decimal

digits. As described in the multiplication algorithm, the inputs

are first decoded to obtain

A = (0,403 – 398,1,000,000,000,000,003)

= (1,000,000,000,000,003) X 10
403-398

 and

B = (0,412 – 398, 25) = 25 X 10
14

.

 Next, the significands are multiplied to produce IPC =

25,000,000,000,000,075. In parallel, the biased exponents are

added and the bias is subtracted to produce IPEXP = 403 + 412 -

398 = 417. If IPC exceeds the result’s precision, p, rounding is

needed. In this example, IPC has 17 digits, and the precision for

decimal64 is p = 16 digits, so it is necessary to round off one

digit and increment IPEXP by one. Depending on the rounding

mode, the rounded result is either

Z = (0,418 - 398;2, 500,000,000,000,007)

= 2,500,000,000,000,007 x 10
20

 or

Z = (0,418 – 398;2,500,000,000,000,008)

= 2,500,000,000,000,008 x 10
20

.

Finally, Z is encoded to give the IEEE 754-2008 BID-

encoded result of either

3448E1BC9BF0400716 or 3448E1BC9BF0400816

depending upon the rounding mode.[10]

IV. ROUNDING MECHANISM

Five rounding modes are specified in IEEE 754 – 2008

specification namely; round ties to even (RTE), round ties to

away (RTA), round towards zero (RTZ), round towards

negative (RTN) and round towards positive (RTP). An example

is explained here to easily explain the concept of rounding.

Consider an input 1234 x 10
-2

, which is 12.34 in simple decimal

arithmetic, after rounding the resulting value is 13 x 10
0
 in RTP

rounding mode and 12 x 10
0
 in all other rounding modes. The

BID encoded significand is represented as 123410 =

100110100102, the subscript represents radix of the number

system and the leading zeros are not shown. Now after

rounding the BID significand is either 1310 = 11012 or 1210 =

11002 depending on the rounding mode.

Decimal rounding can be implemented by dividing the

number by 10
d
 to truncate d digits, the hardware should also

have the intelligence to decide that the resulting number should

be incremented or decremented depending upon the specified

rounding mode. Now in this method the remainder is used to

determine that whether increment or decrement is to be done.

However this method is costly in terms of delay, power

consumption and area. One other technique can be used which

uses comparatively less area and greater delay performance, the

method is called reciprocal multiplication.

Reciprocal Multiplication

In this method we multiply the value with a pre-calculated

approximation of Wd = 10
-d

 to achieve the division by m = 10
d
.

This method is well suited when the divisors are already

known. We have this situation and took the benefit from here.

We need only p divisors in a format with p decimal digits. Here

we have considered decimal64 format and in this format p is

16, so when we multiply by 10
-d

, the value of d is from 1 to 16.

Basic BID multiplication
1. Decode the inputs A and B to obtain (AS, AE,

AC) and (BS, BE, BC)

2. Calculate IPC = AC x BC, IPE = AE + BE - bias

and ZS = AS XOR BS

3. If IPC exceeds p digits, round the product and

adjust the exponent

 Skip 3 if result is within p digits

4. Encode the result in BID format.

ISSN : 2321 – 7529 (Online) | ISSN : 2321 –

www.ijrt.org

Now to perform correct decimal rounding, it is needed to

determine that the pre-rounded result lies exactly halfway

between two consecutive floating point numbers. To

the importance of this, consider an input 6754500 x 10

case the significand is 6754500 and the pre

6754.500. The correct rounding result is 6754 x 10

RTZ and RTN rounding modes, but 6755 x 10

RTP rounding modes.

Theorem 1: Let Ci and m = 10
d
 be positive

that 0 < Ci < 2
u
 and 0 < m < 2

v
. Let q and r be the integer

quotient and remainder of Ci divided by m. Thus, Ci = q·m

0 ≤ r ≤ m-1. Define wd = ceil(2
u+v

/m) and let P = Ci

expressed in the form

� � 2���� � 2�� � �

where Q, R, and D are non-negative integers,

2
u
. Then Q = q. Furthermore r = 0 iff R = 0; r

2
v-1

-1; r = m/2 iff R = 2
v-1

; and r ≥ (m/2)+1 iff R

 On the basis of theorem 1, Q provides the truncated product,

q = Ci/10
d
 and R provides all information needed to determine

the correctly rounded result. u is the number of bits required to

represent the significand which is fixed to 54

format. The number of bits needed to represent 10

by: dlog210, and this value is variable and depends on the value

of d.

 The 2u + 1 bit product, p = Ci x Wd shown in figure

divided into three fields Q, R and D

Figure 2: Product Fields

The D (u bits) field is discarded as it does not contain any

useful information. The R (v bits variable in length) field is

inspected to determine that the fraction is exactly zero, exactly

one half, lies between zero and one half or above one half.

gather all the information above we will use a logic to

determine r_star and s_star. Here r_star is the most significant

bit of the R field and s_star is set if any of the remaining bits of

R field is one or not. Table 1 summarizes the result gathered

from r_star and s_star and their usage.

TABLE 1: Information gathered from r_star and s_star

Conditions

Pre-rounded result is exact

Pre-rounded result is less than mid-point

Pre-rounded result is exactly mid-point

Pre-rounded result is greater than mid-point

– 7510 (Print) International Journal of Research & Technology, Volume

perform correct decimal rounding, it is needed to

rounded result lies exactly halfway

tween two consecutive floating point numbers. To understand

the importance of this, consider an input 6754500 x 10
-3

, in this

the significand is 6754500 and the pre-rounded result is

6754.500. The correct rounding result is 6754 x 10
0
 for RTE,

RTN rounding modes, but 6755 x 10
0
 in RTA and

be positive integers such

. Let q and r be the integer

remainder of Ci divided by m. Thus, Ci = q·m + r,

and let P = Ci × wd be

negative integers, R < 2
v
, and D <

r = 0 iff R = 0; r ≤ (m/2)-1 iff R ≤

 (m/2)+1 iff R ≥ 2
v-1

+1.

On the basis of theorem 1, Q provides the truncated product,

and R provides all information needed to determine

u is the number of bits required to

represent the significand which is fixed to 54 in decimal64

format. The number of bits needed to represent 10
d
, is v, given

10, and this value is variable and depends on the value

duct, p = Ci x Wd shown in figure 2 is

The D (u bits) field is discarded as it does not contain any

useful information. The R (v bits variable in length) field is

that the fraction is exactly zero, exactly

one half, lies between zero and one half or above one half. To

gather all the information above we will use a logic to

determine r_star and s_star. Here r_star is the most significant

is set if any of the remaining bits of

R field is one or not. Table 1 summarizes the result gathered

TABLE 1: Information gathered from r_star and s_star

r_star s_star

0 0

0 1

1 0

 1 1

V. MULTIPLIER UNIT DESIG

In this section, we present the hardware design of a

decimal64 BID multiplier. Figure 3

diagram of the decimal64 BID multiplier. The multiplier has

three inputs: two BID-encoded operands, A and B, and th

rounding mode information, rounding

the BID-encoded result of the multiplication, Z

exception flags. External reset and clock signals are required by

the multiplier/rounder block, but

main blocks of the BID multiplier design are two BID decoders

and one BID encoder, a multiplier/ro

handle the exception flags.

Figure 3: High level block

A. Decoder and Encoder Blocks

 The multiplier includes two BID decoders to get

exponents, significands and signs from the two input operands.

Each decodes an input into: 1 bit for the sign

for the exponent value, 54 bits for the significand, and 4 bits to

indicate a special value (sNaN, qNaN, infinity

 The outputs from the BID decoders are sent to the

multiplier/rounder block where the multip

are performed. The special value bits are sent to a

combinational exception logic block along with inexact,

overflow, and underflow bits from the multiplier/rounder block

to determine the exception flags and sNaN/

encoder produces the final IEEE 754

a finite or a special value (qNaN, sNaN, or Inf) depending on

the encode signals. Although not shown in figure 4, when an

overflow occurs, depending on the sign of the product and the

rounding mode, the encoder produces as final output one of the

following values: negative Inf, positive Inf, the maximum

negative DFP number, or the maximum p

B. Exception Logic Block

When the multiplication res

some digits are rounded off, the floating

inexact and, therefore, the multiplier generates

this exception. In addition, the

overflow or underflow, which must be signaled. The

shown in figure 3, are the inputs to the combinational exception

logic block, along with the special value signals

decoders. This exception logic block pr

International Journal of Research & Technology, Volume 2, Issue 1

 3

ULTIPLIER UNIT DESIGN

In this section, we present the hardware design of a

Figure 3 shows a high-level block

diagram of the decimal64 BID multiplier. The multiplier has

encoded operands, A and B, and the

rounding mode information, rounding_mode. The outputs are

encoded result of the multiplication, Z, and the

exception flags. External reset and clock signals are required by

the multiplier/rounder block, but they are not depicted here. The

main blocks of the BID multiplier design are two BID decoders

and one BID encoder, a multiplier/rounder block, and a block to

Figure 3: High level block

nd Encoder Blocks

udes two BID decoders to get the biased

exponents, significands and signs from the two input operands.

Each decodes an input into: 1 bit for the sign of operand, 10 bits

, 54 bits for the significand, and 4 bits to

(sNaN, qNaN, infinity (Inf), and zero).

The outputs from the BID decoders are sent to the

multiplier/rounder block where the multiplication and rounding

are performed. The special value bits are sent to a

combinational exception logic block along with inexact,

derflow bits from the multiplier/rounder block

e the exception flags and sNaN/Inf signals. The

encoder produces the final IEEE 754-2008 result. This result is

a finite or a special value (qNaN, sNaN, or Inf) depending on

ough not shown in figure 4, when an

overflow occurs, depending on the sign of the product and the

rounding mode, the encoder produces as final output one of the

following values: negative Inf, positive Inf, the maximum

negative DFP number, or the maximum positive DFP number.

When the multiplication result has been rounded and if

rounded off, the floating-point number is

therefore, the multiplier generates a bit signaling

this exception. In addition, the multiplication can produce an

overflow or underflow, which must be signaled. These signals,

, are the inputs to the combinational exception

long with the special value signals from the

decoders. This exception logic block produces the invalid,

ISSN : 2321 – 7529 (Online) | ISSN : 2321 – 7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

www.ijrt.org 4

underflow, overflow, and inexact flags. The invalid flag is

raised when one of the operand inputs is zero and the other is

Inf or when one of the operands is an sNaN. The underflow flag

is raised when the underflow signal from the multiplier is set

and neither input is NaN or Inf. The overflow flag is the

overflow signal coming from the multiplier and indicates that a

result may be too large to represent as a finite DFP number. The

inexact flag is raised when an overflow or underflow result

occurs or when the result is inexact and neither of the inputs is

Inf nor NaN.

C. Multiplier/ Rounding Block

This section describes the multiplier/rounder block that

multiplies and rounds BID-encoded decimal64 numbers.

To reduce area we have used a 53 X 53 bit array multiplier.

The same multiplier is used in rounding unit for area

conservation. The internal block diagram of the multiplier and

rounder unit is shown in figure 4. The brief description of each

block is given in following paragraphs.

C.1 LOD

After extracting Ac, Bc in binary form, the position of ‘1’ is

found out using a LOD block, this will give us two values Atop

and Btop. Now the two values Atop and Btop are added to

calculate k. This will help us to evaluate the need of rounding,

if k < 53 then the result is within the precision p of design. k is

also used to determine the number of digits to be round off d.

C.2 d’ LUT and d calculation

 The number of digits to be rounded off is d, first the value

of d’ is determined by a d’ LUT (look up table) depending upon

the value of k. the table is shown in table. Only k cannot always

determine the value of d, d’ is determined by k, the exact value

d is determined by d’ and a comparison unit of IPC and 10
n
, if

IPC > 10
n
. then d = d’ + 1, else d = d’.

C.3 Wd LUT and 10
n

The value of Wd is calculated using a LUT. The value is

stored in a LUT whose value is calculated manually using the

formula Wd = 2
u+v/m.

C.4 Counter, Multiplexer Unit and Register Unit

The counter is used to count from 0 to 101(5 in decimal),

this counter is used to reuse the multiplier. When count = 0, the

significands Ac and Bc are multiplied. When count = 1, WdL

and IPL are multiplied and result is stored in reg1, when count

= 2, WdL and IPH are multiplied and result is stored in reg2,

when count = 3, WdH and IPL are multiplied and stored in

reg3, when count = 4, WdH and IPH are multiplied. When

count = 5 the values are added to get a sum of 216 bit stored in

product register.

C.5 Multiplier

 A 54 X 54 multiplier is used. The same multiplier is used

for both multiplication of significands and for rounding. This

approach will save the very important area of design and makes

the design more hardware cost effective.

C.6 Comparison and rounding needed

First k is compared with a constant value 53, if k < 53 then

round_need = ‘0’. If k > 53 then roun_need = ‘1’. If k = 53 then

IPL is compared with 10
16

, if IPL < 10
16

then round_need is ‘0’

else ‘1’.

Figure 4: Multiplier/rounder block part A

C.7 Multiplier Disable unit

When round_need is ‘0’ then from count 1 to count 5 there

is no need of multiplier, so we disabled the multiplier during

this period. This will reduce the power consumption of the

design. Also when AC or BC any of the two significands are

zero then the result is zero. In this condition the multiplier is

disabled.

C.8 Extract significand and rounder unit

 This unit will determine the significand i.e. the output Z,

also the r* and s* are calculated depending upon the values of

d. the P field contains two fields the R and Q field. The MSB of

R field is r* and if the remaining bits of R field is greater than 0

then s* is ‘1’ else ‘0’. The higher bits of P is Q field which is

here C [108 : 54]. The remaining bits form R field.

C.9 Result Mux Logic and Increment

 Depending upon the rounding values, r*, s* Ctmp [0] and Si

the increment condition is determined. The table 1 shows

increment condition.

Table 1: Rounding Modes and Increment Conditions

ISSN : 2321 – 7529 (Online) | ISSN : 2321 –

www.ijrt.org

Rounding mode Increment Condition

roundTiesToAway r*

roundTiesToEven r* & (

roundTowardZero 0

roundTowardPositive ~Si & (

roundTowardNegative Si &(

Figure 5: Rounder Block part B

Finally the encoding is accomplished. The table

shows the values to be encoded. Also the exception

encoded, when needed.

Table 2: Output Fields with round_n

round

_need
ZS ZE

0 AS XOR BS AE + Be – 398

1 As XOR BS AE + Be - 398 + d

VI. RESULTS AND CONCLUSI

We have used Xilinx tool for simulation, synthesis and

implementation of our design. Figure 6 shows the simulation

result of the design. We have used ISIM tool by Xilinx to

simulate the design. In the figure a[63:0] and b[63:0]

(hexadecimal values) are the BID encoded input operands. Next

the design decodes them and produces as, bs (sign bits), ae[9:0]

and be[9:0] (bias exponent values, decimal equivalent

ac[53:0] and bc[53:0] (multiplier and multiplicand respectively

decimal equivalent). After the decoding of the BID input

operands the multiplication of ac[53:0] and bc[53 : 0]

accomplished and need of rounding is determined

k[6:0], here in this case rounding is not needed so the signal

round_need is ‘0’. The exponent and sign values ar

namely zpe[9:0] (decimal equivalent) and si. As we can see

from figure that multiplier is off during count 1 to count 5 (p =

‘Z’), this will reduce the dynamic power consumption of the

design. Next the intermediate results are encoded to produc

en_output[63:0] (hexadecimal value), the final result.

– 7510 (Print) International Journal of Research & Technology, Volume

Increment Condition

& (s* | Ctmp[0])

& (r* | s*)

&(r* | s*)

Rounder Block part B

Finally the encoding is accomplished. The table 2 below

Also the exception values are

ith round_need

 ZC

398 IPL

398 + d Z

RESULTS AND CONCLUSION

We have used Xilinx tool for simulation, synthesis and

Figure 6 shows the simulation

result of the design. We have used ISIM tool by Xilinx to

simulate the design. In the figure a[63:0] and b[63:0]

BID encoded input operands. Next

the design decodes them and produces as, bs (sign bits), ae[9:0]

, decimal equivalent) and

0] (multiplier and multiplicand respectively,

coding of the BID input

ac[53:0] and bc[53 : 0] is

accomplished and need of rounding is determined using signal

, here in this case rounding is not needed so the signal

The exponent and sign values are generated

zpe[9:0] (decimal equivalent) and si. As we can see

from figure that multiplier is off during count 1 to count 5 (p =

‘Z’), this will reduce the dynamic power consumption of the

design. Next the intermediate results are encoded to produce

, the final result.

Figure 6: Simulation result using Xilinx ISIM

Here we have used Xilinx XST synthesizer to synthesize

our design. Also Xilinx timing analyzer is used to calculate the

delay of the design. The resource utilization summary is

depicted in table.

Table 2: Resource Utilization Summary

Serial

no

Components used and

Delay

1 4 input LUT’s

2 Slices

3 Flip flops

4 Cycles

5 Delay

We have used X-Power analyzer

static and dynamic power consumption of the design. The

power consumption is summary is depicted in table.

Table 3: Power Consumption Summary

In this work we have used BID encoding instead of DPD

encoding. This will reduce delay and hardware cost of the

design. Also we have reused the multiplier for rounding

purposes this will further decrease

design, also power consumption of the system will be reduced.

One more amendment we have incorporated here is we have

disabled the multiplier when rounding is not needed, this will

reduce the dynamic power consumption of the design.

Serial

no.
Type

1
Static power

consumption

2
Dynamic

consumption

3
Total power

consumption

International Journal of Research & Technology, Volume 2, Issue 1

 5

: Simulation result using Xilinx ISIM

Here we have used Xilinx XST synthesizer to synthesize

our design. Also Xilinx timing analyzer is used to calculate the

The resource utilization summary is

Resource Utilization Summary

Components used and

Delay
Our design

4 input LUT’s 5907

Slices 3041

Flip flops 718

Cycles 6

Delay 26.06ns

analyzer by Xilinx to calculate the

power consumption of the design. The

power consumption is summary is depicted in table.

Power Consumption Summary

In this work we have used BID encoding instead of DPD

encoding. This will reduce delay and hardware cost of the

design. Also we have reused the multiplier for rounding

purposes this will further decrease the hardware cost of the

ion of the system will be reduced.

One more amendment we have incorporated here is we have

disabled the multiplier when rounding is not needed, this will

reduce the dynamic power consumption of the design.

Type Our design

Static power

consumption
168.13 mW

Dynamic power

consumption
88.14 mW

Total power

consumption
256.28 mW

ISSN : 2321 – 7529 (Online) | ISSN : 2321 – 7510 (Print) International Journal of Research & Technology, Volume 2, Issue 1

www.ijrt.org 6

VII. FUTURE SCOPE

A low power multiplier can be used here instead of simple

array multiplier and the concept of clock gating [12-18]; this

will increase the power performance of the system. Also instead

of using reciprocal multiplication as a rounding mechanism,

injection based rounding can be used, this will reduce the

delay.[19] Also optimization in coding is also possible, which

will improve the performance of the design.

REFERENCES

[1] M. F. Cowlishaw, “Decimal Floating-Point : Algorism for Computers,”

Proceedings of the 16th IEEE Symposium on Computer Arithmetic, June

2003, Santiago deCompostela, Spain, pp. 104-111.

[2] D.G. for Economic and F. A. C. from the Commission to the European

Council, “Review of the Introduction of Euro Notes and Coins,” EURO

PAPERS, Apr. 2002.

[3] IBM Corporation, “The ‘telco’ benchmark,” Available at

http://www2.hursley.ibm.com/decimal/telco.html, 2002.

[4] M. F. Cowlishaw, “The decNumber Library,” Available at

http://www2.hursley.ibm.com/decimal/decnumber/pdf 2006.

[5] Sun Microsystems, “BigDecimal (Java 2 Platforms SE v1.4.0),” URL:

http://java.sun/com/products, Sun Microsystems Inc., 2002.

[6] ANSI/IEEE 754-1985, “Standard for Binary Floating-Point Arithmetic”.

[7] http://en.wikipedia.org/wiki/Binary_Integer_Decimal.

[8] P. Tang, “Binary-Integer Decimal Encoding for Decimal Floating-Point,”

Intel Corporation, Available at

http://754r.ucbtest.org/issues/decimal/bid_rationale.pdf.

[9] M. F. Cowlishaw, “Densely Packed Decimal Encoding,” IEEE

Proceedings – Computers and Digital Techniques, vol. 149, May

2002, pp. 102-104.

[10] Ping Tak Peter Tang “BID – binary integer decimal encoding ” Intel

Corporation, july 2006.

[11] Sonia Gonzalez-Navarro,Charles Tsen, Member and Michael J. Schulte,”

Binary Integer Decimal-Based Floating-Point Multiplication” IEEE

transactions on computers, vol. 62, no. 7, july 2013 pp 1460-1466.

[12]http://www.mitpublications.org/yellow_images/1315565167_logo_13.pdf .

[13]http://www.xilinx.com/support/documentation/white_papers/wp370_

Intelligent_Clock_Gating.pdf

[14] J. Di and J. S. Yuan, “Power-aware pipelined multiplier design based on

2-dimensional pipeline gating,” in 13th Great Lakes Symposium on VLSI.

ACM, 2003, pp. 64–67.

[15] Sunjoo Hong, Taehwan Roh and Hoi-Jun Yoo, “a 145w 8×8 parallel

multiplier based on optimized bypassing architecture”, department of

electrical engineering, Korea advanced institute of science and

technology (KAIST), Daejeon, Republic of Korea, IEEE, pp.1175-1178,

2011.

[16] Yin-Tsung Hwang, Jin-Fa Lin, Ming-Hwa Sheu and Chia-Jen Sheu, “low

power multipliers using enhenced row bypassing schemes”, department

of electronic engineering, National Yunlin University of science &

technology, Touliu, Yunlin, Taiwan, IEEE, pp.136-140, 2007.

[17] George Economakos, Dimitris Bekiaris and Kiamal Pekmestzi, “a mixed

style architecture for low power multipliers based on a bypass

technique”, national technical University of Athens, school of electrical

and computer engineering, heroon polytechniou 9, GR-15780 Athens,

Greece, IEEE, pp.4-6, 2010.

[18] Meng-Lin Hsia and Oscal T.-C. Chen, “low power multiplier optimized

by partial-product summation and adder cells”, dept. of electrical

engineering, national chung cheng University, chia-yi, 621, Taiwan,

IEEE, pp.3042-3045, 2009.

[19] Guy Even, Silvia M. Mueller, Peter-Michael Seidel “A dual precision

IEEE Floating-point multiplier” Elsevier INTEGRATION, the VLSI

journal 29 (2000) 167-180.

