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Abstract — Binary floating point arithmetic is popularly used in 

hardware designs. But there are certain flaws in binary floating 

point arithmetic (BFP) namely; rounding error, error is 

representing decimal fractions etc.  To reduce these errors 

decimal floating point arithmetic is used. In this paper an 

optimized approach to implement IEEE complaint binary integer 

decimal encoding based multiplier unit is presented. The 

proposed optimizations are given to reduce the delay and 

dynamic power consumption.    
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I.   INTRODUCTION  

The binary floating point (BFP) arithmetic has certain flaws 

namely; it cannot provide correct decimal rounding and cannot 

precisely represent some decimal fractions such as 0.001, 

0.0475 etc [1]. There are many applications where a precision is 

required such as billing, insurance, currency conversion, 

banking and some scientific applications. European Union 

requires that currency conversion to and from EURO is to be 

calculated to six decimal digits [2]. One study estimates that 

errors generating from BFP arithmetic can sum up to a yearly 

billing of over dollar 5 million for a large billing organization 

[3]. Therefore decimal floating point (DFP) arithmetic becomes 

very important in many current and future applications as it has 

ability to represent decimal fractions precisely. DFP arithmetic 

also has the ability to provide correct decimal rounding that will 

mimic the manual rounding. 

Applications which cannot tolerate errors generating from 

BFP arithmetic, these application use software platforms to 

perform DFP arithmetic [1]. There are many software packages 

which are available for example: the java BigDecimal library 

[5] and IBM’s decNumber library [4]. Also Intel published 

results for a decimal arithmetic library which uses Binary 

integer decimal (BID) encoding. These software packages are 

good enough for current applications, but trends towards 

globalization and e-commerce are increasing, so faster response 

of these systems is required. Software designs to these systems 

may be inadequate with the increasing performance demands of 

future systems. So hardware implementation of these systems is 

the need of the hour. 

In 2008, the IEEE 754-1985 floating point standard has 

been revised and the new standard called the IEEE 754-2008 

floating point standard was setup [6], which includes 

specifications for DFP formats, encoding and operations. The  

IEEE 754-2008 standard includes an encoding format for DFP 

numbers in which the significand and the exponent (and the 

payloads of NaNs) can be encoded in two ways namely; binary 

encoding and decimal encoding. [7] 

 Both the encoding formats break a number into a sign bit s, 

an exponent E, and a p-digit significand c. The value encoded is 

(−1)
s 
× 10

E 
× c. In both formats the range of possible values is 

identical, but the significand c is encoded differently. In the 

decimal encoding, it is encoded as a series of p decimal digits 

using the densely packed decimal encoding (DPD). This makes 

conversion to decimal form efficient, but it requires a special 

decimal ALU to process and it increases the hardware cost and 

delay of design. In the binary encoding also known as binary 

integer decimal (BID) encoding, it is encoded as a binary 

number. The BID encoding method is simple to implement as 

compared to DPD. It also requires less hardware also the delay 

performance of the design improves. [7] 

In this paper a floating point multiplier unit is proposed. 

This floating point multiplier unit is IEEE P754 - 2008 

complaint and based on binary integer decimal (BID) encoding 

for DFP arithmetic. The proposed floating point multiplier unit 

uses reciprocal multiplication to perform rounding and it is 

optimized for reduced delay and power consumption.  

II.  DECIMAL FLOATING POINT REPRESENTATION 

In IEEE P754-2008, the value of a finite decimal floating 

point number is given by: 

(−1)� × 10	
��
� × � 

Where S is the sign bit, ‘0’ represents positive (+) number and 

‘1’ represents negative (-) number, E is the biased exponent, 

bias is a constant value that makes E a non-negative value and 

C is the significand. The IEEE 754 – 2008 specifies two 

methods of representing the significands of these numbers 

namely: Binary Integer Decimal (BID) [8] and Densely Packed 

Decimal (DPD) [9]. In BID encoding the significand is 

represented by an unsigned binary integer and in case of DPD 

encoding the significand is represented by unsigned decimal 

integer, a group of 10 bits is used to represent three decimal 

digits [9]. Sometimes the BID is called binary number and DPD 

is called as decimal number. For example 9.94 is represented as 

994 x 10
-3

 in floating point number system, now the significand 

994 can be represented using either BID or DPD encoding.  
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Three types of numbers are defined in IEEE P754 - 2008, 

decimal32 where the number is represented by 32 bits, 

decimal64 in this the number is represented by 64 bits and 

decimal128 where 128 bit are used to represented the number. 

In this paper decimal64 number is used, in this format 54 bits 

are used to encode the significand, remaining 10 bits are used to 

encode the sign bit and biased exponent. The maximum 

significand supported by decimal64 is 10
16

 – 1, this number is 

less than 2
54

. More details of BID encoding are given in [10]. 

III. BID MULTIPLICATION TECHNIQUE  

A basic BID multiplication algorithm is shown in figure 1 

 

 

 

 

 

 

 

Figure 1: Basic floating point multiplication algorithm 

To understand the hardware implementation of the BID 

multiplier, we first discuss a basic algorithm to multiply BID 

numbers. In IEEE 754-2008 format, the representation of a 

finite DFP number consists of three encoded values (S, E-bias, 

C), where S is the sign bit, E is a biased exponent, bias is a 

constant value that makes E nonnegative, and C is the 

significand. In the following discussion, A and B are the IEEE 

754-2008 input operands, and (AS, AE, AC) and (BS, BE, BC) are 

their respective triples. The basic BID multiplication algorithm 

consists of four important steps and is shown in Figure 1. The 

IEEE 754-2008 BID-encoded operands are decoded to get their 

signs, biased exponents, and significands. Next, the 

significands, AC and BC, are multiplied to obtain the 

intermediate product, IPC. In parallel, the exponents are added 

and the bias is subtracted to produce the intermediate exponent, 

IPEXP. In the third step of the algorithm, IPC is tested to 

determine the need of rounding and the number of digits to be 

rounded. If the number of decimal digits in IPC is not greater 

than the result precision, p, rounding is not needed, and the 

multiplication operation is finished. Otherwise, IPC must be 

rounded and IPEXP must be adjusted. Finally, the sign, biased 

exponent, and significand of the result are packed to obtain the 

IEEE 754-2008 BID-encoded result of the multiplication. As an 

example of how BID multiplication is performed, consider the 

decimal64 BID-encoded operands of A = 

32638D7EA4C6800316 and B = 338000000000001916 as inputs 

to the multiplication, where the subscript 16 indicates 

hexadecimal digits. Numbers without subscripts have decimal 

digits. As described in the multiplication algorithm, the inputs 

are first decoded to obtain 

A = (0,403 – 398,1,000,000,000,000,003) 

= (1,000,000,000,000,003) X 10
403-398

 and 

B = (0,412 – 398, 25)  = 25 X 10
14

. 

 Next, the significands are multiplied to produce IPC = 

25,000,000,000,000,075. In parallel, the biased exponents are 

added and the bias is subtracted to produce IPEXP = 403 + 412 - 

398 = 417. If IPC exceeds the result’s precision, p, rounding is 

needed. In this example, IPC has 17 digits, and the precision for 

decimal64 is p = 16 digits, so it is necessary to round off one 

digit and increment IPEXP by one. Depending on the rounding 

mode, the rounded result is either 

Z = (0,418 - 398;2, 500,000,000,000,007) 

= 2,500,000,000,000,007 x 10
20

 or 

Z = (0,418 – 398;2,500,000,000,000,008) 

= 2,500,000,000,000,008 x 10
20

. 

Finally, Z is encoded to give the IEEE 754-2008 BID-

encoded result of either 

3448E1BC9BF0400716  or  3448E1BC9BF0400816 

depending upon the rounding mode.[10] 

IV.    ROUNDING MECHANISM 

Five rounding modes are specified in  IEEE 754 – 2008 

specification namely; round ties to even (RTE), round ties to 

away (RTA), round towards zero (RTZ), round towards 

negative (RTN) and round towards positive (RTP). An example 

is explained here to easily explain the concept of rounding. 

Consider an input 1234 x 10
-2

, which is 12.34 in simple decimal 

arithmetic, after rounding the resulting value is 13 x 10
0
 in RTP 

rounding mode and 12 x 10
0
 in all other rounding modes. The 

BID encoded significand is represented as 123410 = 

100110100102, the subscript represents radix of the number 

system and the leading zeros are not shown. Now after 

rounding the BID significand is either 1310 = 11012 or 1210 = 

11002 depending on the rounding mode.   

Decimal rounding can be implemented by dividing the 

number by 10
d
 to truncate d digits, the hardware should also 

have the intelligence to decide that the resulting number should 

be incremented or decremented depending upon the specified 

rounding mode. Now in this method the remainder is used to 

determine that whether increment or decrement is to be done. 

However this method is costly in terms of delay, power 

consumption and area. One other technique can be used which 

uses comparatively less area and greater delay performance, the 

method is called reciprocal multiplication. 

Reciprocal Multiplication  

In this method we multiply the value with a pre-calculated 

approximation of Wd = 10
-d

 to achieve the division by m = 10
d
. 

This method is well suited when the divisors are already 

known. We have this situation and took the benefit from here. 

We need only p divisors in a format with p decimal digits. Here 

we have considered decimal64 format and in this format p is 

16, so when we multiply by 10
-d

, the value of d is from 1 to 16. 

Basic BID multiplication 
1. Decode the inputs A and B to obtain (AS, AE, 

AC) and (BS, BE, BC)  

2. Calculate IPC = AC x BC, IPE = AE + BE - bias 

and ZS = AS XOR BS 

3. If IPC exceeds p digits, round the product and 

adjust the exponent 

 Skip 3 if result is within p digits  

4. Encode the result in BID format. 
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Now to perform correct decimal rounding, it is needed to 

determine that the pre-rounded result lies exactly halfway 

between two consecutive floating point numbers. To 

the importance of this, consider an input 6754500 x 10

case the significand is 6754500 and the pre

6754.500. The correct rounding result is 6754 x 10

RTZ and RTN rounding modes, but 6755 x 10

RTP rounding modes. 

Theorem 1: Let Ci and m = 10
d
 be positive

that 0 < Ci < 2
u
 and 0 < m < 2

v
. Let q and r be the integer 

quotient and remainder of Ci divided by m. Thus, Ci = q·m

0 ≤ r ≤ m-1. Define wd = ceil(2
u+v

/m) and let P = Ci 

expressed in the form  

� �  2���� � 2�� � � 

where Q, R, and D are non-negative integers,

2
u
. Then Q = q. Furthermore r = 0 iff R = 0; r 

2
v-1

-1; r = m/2 iff R = 2
v-1

; and r ≥ (m/2)+1 iff R

    On the basis of theorem 1, Q provides the truncated product, 

q = Ci/10
d
 and R provides all information needed to determine 

the correctly rounded result.  u is the number of bits required to 

represent the significand which is fixed to 54

format. The number of bits needed to represent 10

by: dlog210, and this value is variable and depends on the value 

of d. 

     The 2u + 1 bit product, p = Ci x Wd shown in figure

divided into three fields Q, R and D 

 

Figure 2: Product Fields

The D (u bits) field is discarded as it does not contain any 

useful information. The R (v bits variable in length) field is 

inspected to determine that the fraction is exactly zero, exactly 

one half, lies between zero and one half or above one half.

gather all the information above we will use a logic to 

determine r_star and s_star. Here r_star is the most significant 

bit of the R field and s_star is set if any of the remaining bits of 

R field is one or not. Table 1 summarizes the result gathered 

from r_star and s_star and their usage.  

TABLE 1: Information gathered from r_star and s_star

Conditions 

Pre-rounded result is exact 

Pre-rounded result is less than mid-point 

Pre-rounded result is exactly mid-point 

Pre-rounded result is greater than mid-point 
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perform correct decimal rounding, it is needed to 

rounded result lies exactly halfway 

tween two consecutive floating point numbers. To understand 

the importance of this, consider an input 6754500 x 10
-3

, in this 

the significand is 6754500 and the pre-rounded result is 

6754.500. The correct rounding result is 6754 x 10
0
 for RTE, 

RTN rounding modes, but 6755 x 10
0
 in RTA and 

be positive integers such 

. Let q and r be the integer 

remainder of Ci divided by m. Thus, Ci = q·m + r, 

and let P = Ci × wd be 

 

negative integers, R < 2
v
, and D < 

r = 0 iff R = 0; r ≤ (m/2)-1 iff R ≤ 

 (m/2)+1 iff R ≥ 2
v-1

+1. 

On the basis of theorem 1, Q provides the truncated product, 

and R provides all information needed to determine 

u is the number of bits required to 

represent the significand which is fixed to 54 in decimal64 

format. The number of bits needed to represent 10
d
, is v, given 

10, and this value is variable and depends on the value 

duct, p = Ci x Wd shown in figure 2 is 

   

 

The D (u bits) field is discarded as it does not contain any 

useful information. The R (v bits variable in length) field is 

that the fraction is exactly zero, exactly 

one half, lies between zero and one half or above one half. To 

gather all the information above we will use a logic to 

determine r_star and s_star. Here r_star is the most significant 

is set if any of the remaining bits of 

R field is one or not. Table 1 summarizes the result gathered 

TABLE 1: Information gathered from r_star and s_star 

r_star s_star 

0 0 

0 1 

1 0 

 1 1 

V.     MULTIPLIER UNIT DESIG

In this section, we present the hardware design of a 

decimal64 BID multiplier. Figure 3

diagram of the decimal64 BID multiplier. The multiplier has 

three inputs: two BID-encoded operands, A and B, and th

rounding mode information, rounding

the BID-encoded result of the multiplication, Z

exception flags. External reset and clock signals are required by 

the multiplier/rounder block, but 

main blocks of the BID multiplier design are two BID decoders 

and one BID encoder, a multiplier/ro

handle the exception flags. 

Figure 3: High level block

A.  Decoder and Encoder Blocks

      The multiplier includes two BID decoders to get

exponents, significands and signs from the two input operands. 

Each decodes an input into: 1 bit for the sign

for the exponent value, 54 bits for the significand, and 4 bits to 

indicate a special value (sNaN, qNaN, infinity 

 The outputs from the BID decoders are sent to the 

multiplier/rounder block where the multip

are performed. The special value bits are sent to a 

combinational exception logic block along with inexact, 

overflow, and underflow bits from the multiplier/rounder block 

to determine the exception flags and sNaN/

encoder produces the final IEEE 754

a finite or a special value (qNaN, sNaN, or Inf) depending on 

the encode signals. Although not shown in figure 4, when an 

overflow occurs, depending on the sign of the product and the 

rounding mode, the encoder produces as final output one of the 

following values: negative Inf, positive Inf, the maximum 

negative DFP number, or the maximum p

B.  Exception Logic Block 

When the multiplication res

some digits are rounded off, the floating

inexact and, therefore, the multiplier generates

this exception. In addition, the

overflow or underflow, which must be signaled. The

shown in figure 3, are the inputs to the combinational exception 

logic block, along with the special value signals

decoders. This exception logic block pr
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ULTIPLIER UNIT DESIGN 

In this section, we present the hardware design of a 

Figure 3 shows a high-level block 

diagram of the decimal64 BID multiplier. The multiplier has 

encoded operands, A and B, and the 

rounding mode information, rounding_mode. The outputs are 

encoded result of the multiplication, Z, and the 

exception flags. External reset and clock signals are required by 

the multiplier/rounder block, but they are not depicted here. The 

main blocks of the BID multiplier design are two BID decoders 

and one BID encoder, a multiplier/rounder block, and a block to 

 

Figure 3: High level block 

nd Encoder Blocks 

udes two BID decoders to get the biased 

exponents, significands and signs from the two input operands. 

Each decodes an input into: 1 bit for the sign of operand, 10 bits 

, 54 bits for the significand, and 4 bits to 

(sNaN, qNaN, infinity (Inf), and zero). 

The outputs from the BID decoders are sent to the 

multiplier/rounder block where the multiplication and rounding 

are performed. The special value bits are sent to a 

combinational exception logic block along with inexact, 

derflow bits from the multiplier/rounder block 

e the exception flags and sNaN/Inf signals. The 

encoder produces the final IEEE 754-2008 result. This result is 

a finite or a special value (qNaN, sNaN, or Inf) depending on 

ough not shown in figure 4, when an 

overflow occurs, depending on the sign of the product and the 

rounding mode, the encoder produces as final output one of the 

following values: negative Inf, positive Inf, the maximum 

negative DFP number, or the maximum positive DFP number. 

When the multiplication result has been rounded and if 

rounded off, the floating-point number is 

therefore, the multiplier generates a bit signaling 

this exception. In addition, the multiplication can produce an 

overflow or underflow, which must be signaled. These signals, 

, are the inputs to the combinational exception 

long with the special value signals from the 

decoders. This exception logic block produces the invalid, 
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underflow, overflow, and inexact flags. The invalid flag is 

raised when one of the operand inputs is zero and the other is 

Inf or when one of the operands is an sNaN. The underflow flag 

is raised when the underflow signal from the multiplier is set 

and neither input is NaN or Inf. The overflow flag is the 

overflow signal coming from the multiplier and indicates that a 

result may be too large to represent as a finite DFP number. The 

inexact flag is raised when an overflow or underflow result 

occurs or when the result is inexact and neither of the inputs is 

Inf nor NaN. 

C.  Multiplier/ Rounding Block 

This section describes the multiplier/rounder block that 

multiplies and rounds BID-encoded decimal64 numbers. 

To reduce area we have used a 53 X 53 bit array multiplier. 

The same multiplier is used in rounding unit for area 

conservation. The internal block diagram of the multiplier and 

rounder unit is shown in figure 4. The brief description of each 

block is given in following paragraphs. 

C.1 LOD  

After extracting Ac, Bc in binary form, the position of ‘1’ is 

found out using a LOD block, this will give us two values Atop 

and Btop. Now the two values Atop and Btop are added to 

calculate k.  This will help us to evaluate the need of rounding, 

if k < 53 then the result is within the precision p of design. k is 

also used to determine the number of digits to be round off d. 

C.2 d’ LUT and d calculation  

      The number of digits to be rounded off is d, first the value 

of d’ is determined by a d’ LUT (look up table) depending upon 

the value of k. the table is shown in table. Only k cannot always 

determine the value of d, d’ is determined by k, the exact value 

d is determined by d’ and a comparison unit of IPC and 10
n
, if 

IPC > 10
n
. then d = d’ + 1, else d = d’. 

C.3 Wd LUT and 10
n
 

The value of Wd is calculated using a LUT. The value is 

stored in a LUT whose value is calculated manually using the 

formula Wd = 2
u+v/m. 

C.4 Counter, Multiplexer Unit and Register Unit 

The counter is used to count from 0 to 101(5 in decimal), 

this counter is used to reuse the multiplier. When count = 0, the 

significands Ac and Bc are multiplied. When count = 1, WdL 

and IPL are multiplied and result is stored in reg1, when count 

= 2, WdL and IPH are multiplied and result is stored in reg2, 

when count = 3, WdH and IPL are multiplied and stored in 

reg3, when count = 4, WdH and IPH are multiplied. When 

count = 5 the values are added to get a sum of 216 bit stored in 

product register. 

C.5 Multiplier 

  A 54 X 54 multiplier is used. The same multiplier is used 

for both multiplication of significands and for rounding. This 

approach will save the very important area of design and makes 

the design more hardware cost effective. 

C.6 Comparison and rounding needed 

First k is compared with a constant value 53, if k < 53 then 

round_need = ‘0’. If k > 53 then roun_need = ‘1’. If k = 53 then 

IPL is compared with 10
16

, if IPL < 10
16 

then round_need is ‘0’ 

else ‘1’. 

 

Figure 4: Multiplier/rounder block part A 

C.7 Multiplier Disable unit 

When round_need is ‘0’ then from count 1 to count 5 there 

is no need of multiplier, so we disabled the multiplier during 

this period. This will reduce the power consumption of the 

design. Also when AC or BC any of the two significands are 

zero then the result is zero. In this condition the multiplier is 

disabled. 

C.8 Extract significand and rounder unit 

 This unit will determine the significand i.e. the output Z, 

also the r* and s* are calculated depending upon the values of 

d. the P field contains two fields the R and Q field. The MSB of 

R field is r* and if the remaining bits of R field is greater than 0 

then s* is ‘1’ else ‘0’. The higher bits of P is Q field which is 

here C [108 : 54]. The remaining bits form R field.  

C.9 Result Mux Logic and Increment 

 Depending upon the rounding values, r*, s* Ctmp [0] and Si 

the increment condition is determined. The table 1 shows 

increment condition. 

Table 1: Rounding Modes and Increment Conditions 
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Rounding mode Increment Condition

roundTiesToAway r* 

roundTiesToEven r* & (

roundTowardZero 0 

roundTowardPositive ~Si & (

roundTowardNegative Si &(

Figure 5: Rounder Block part B

Finally the encoding is accomplished. The table

shows the values to be encoded. Also the exception 

encoded, when needed. 

Table 2: Output Fields with round_n

round

_need 
ZS ZE 

0 AS XOR BS AE + Be – 398

1 As XOR BS AE + Be - 398 + d

VI.     RESULTS AND CONCLUSI

We have used Xilinx tool for simulation, synthesis and 

implementation of our design. Figure 6 shows the simulation 

result of the design. We have used ISIM tool by Xilinx to 

simulate the design. In the figure a[63:0] and b[63:0]

(hexadecimal values) are the BID encoded input operands. Next 

the design decodes them and produces as, bs (sign bits), ae[9:0] 

and be[9:0] (bias exponent values, decimal equivalent

ac[53:0] and bc[53:0] (multiplier and multiplicand respectively

decimal equivalent). After the decoding of the BID input 

operands the multiplication of ac[53:0] and bc[53 : 0]

accomplished and need of rounding is determined 

k[6:0], here in this case rounding is not needed so the signal 

round_need is ‘0’. The exponent and sign values ar

namely zpe[9:0] (decimal equivalent) and si. As we can see 

from figure that multiplier is off during count 1 to count 5 (p = 

‘Z’), this will reduce the dynamic power consumption of the 

design. Next the intermediate results are encoded to produc

en_output[63:0] (hexadecimal value), the final result.
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& (s* | Ctmp[0]) 

& (r* | s*) 

&(r* | s*) 

 

Rounder Block part B 

Finally the encoding is accomplished. The table 2 below 

Also the exception values are 

ith round_need 

 ZC 

398 IPL 

398 + d Z 

RESULTS AND CONCLUSION 

We have used Xilinx tool for simulation, synthesis and 

Figure 6 shows the simulation 

result of the design. We have used ISIM tool by Xilinx to 

simulate the design. In the figure a[63:0] and b[63:0] 

BID encoded input operands. Next 

the design decodes them and produces as, bs (sign bits), ae[9:0] 

, decimal equivalent) and 

0] (multiplier and multiplicand respectively, 

coding of the BID input 

ac[53:0] and bc[53 : 0] is 

accomplished and need of rounding is determined using signal 

, here in this case rounding is not needed so the signal 

The exponent and sign values are generated 

zpe[9:0] (decimal equivalent) and si. As we can see 

from figure that multiplier is off during count 1 to count 5 (p = 

‘Z’), this will reduce the dynamic power consumption of the 

design. Next the intermediate results are encoded to produce 

, the final result.  

Figure 6: Simulation result using Xilinx ISIM

Here we have used Xilinx XST synthesizer to synthesize 

our design. Also Xilinx timing analyzer is used to calculate the 

delay of the design. The resource utilization summary is 

depicted in table.  

Table 2: Resource Utilization Summary

Serial 

no 

Components used and 

Delay

1 4 input LUT’s

2 Slices

3 Flip flops

4 Cycles

5 Delay

  

We have used X-Power analyzer

static and dynamic power consumption of the design. The 

power consumption is summary is depicted in table.

Table 3: Power Consumption Summary

In this work we have used BID encoding instead of DPD 

encoding. This will reduce delay and hardware cost of the 

design. Also we have reused the multiplier for rounding 

purposes this will further decrease 

design, also power consumption of the system will be reduced. 

One more amendment we have incorporated here is we have 

disabled the multiplier when rounding is not needed, this will 

reduce the dynamic power consumption of the design.

Serial 

no. 
Type

1 
Static power 

consumption

2 
Dynamic 

consumption

3 
Total power 

consumption
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: Simulation result using Xilinx ISIM 

Here we have used Xilinx XST synthesizer to synthesize 

our design. Also Xilinx timing analyzer is used to calculate the 

The resource utilization summary is 

Resource Utilization Summary 

Components used and 

Delay 
Our design 

4 input LUT’s 5907 

Slices 3041 

Flip flops 718 

Cycles 6 

Delay 26.06ns 

analyzer by Xilinx to calculate the 

power consumption of the design. The 

power consumption is summary is depicted in table. 

Power Consumption Summary 

In this work we have used BID encoding instead of DPD 

encoding. This will reduce delay and hardware cost of the 

design. Also we have reused the multiplier for rounding 

purposes this will further decrease the hardware cost of the 

ion of the system will be reduced. 

One more amendment we have incorporated here is we have 

disabled the multiplier when rounding is not needed, this will 

reduce the dynamic power consumption of the design. 

Type Our design 

Static power 

consumption 
168.13 mW 

Dynamic power 

consumption 
88.14 mW 

Total power 

consumption 
256.28 mW 
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VII.    FUTURE SCOPE 

A low power multiplier can be used here instead of simple 

array multiplier and the concept of clock gating [12-18]; this 

will increase the power performance of the system. Also instead 

of using reciprocal multiplication as a rounding mechanism, 

injection based rounding can be used, this will reduce the 

delay.[19] Also optimization in coding is also possible, which 

will improve the performance of the design.   
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