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Abstract: A numerical model is developed to estimate the boundary 

heat flux in 1D heat conduction problem using CGM. No prior 

information is used for the functional form of space wise varying 

heat flux. The energy equations are discredited using the finite 

volume method. The direct problem is first solved with a known 

heat flux at boundary and the temperature field of the domain is 

determined. Inverse method is then applied to predict this heat flux 

with some of the additional temperature data inside the solution 

domain obtained from the direct problem. The prediction of 

boundary heat flux by the present algorithm is found to be quite 

reasonable. 
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I. INTRODUCTION 

When the direct measurements for a problem become 

difficult, inverse techniques are applied to estimate the boundary 

or inlet conditions, thermal properties or source term 

distributions of the material or medium, from the available 

experimental data. An inverse technique consists of typically 

both the forward model and an inverse model. In the forward 

model the effects (temperature profile of the body) can be found 

out on the basis of the causes (boundary temperature or flux). 

An inverse model is just the opposite of the forward model 

where the effects are known and the cause has to be found out. 

The inverse heat conduction problem has received 

much attention since it has been widely used in practical 

engineering problems. Three types of inverse heat conduction 

problems are often raised namely estimation of surface 

conditions (boundary heat flux or temperature) [1-7], source 

term [8-21] and material thermal properties [22-27]. A number 

of deterministic optimization theories and algorithms have been 

developed toward the solution of these inverse problems. The 

CGM which is a deterministic method is mostly employed in 

inverse problems. The CGM is also called an iterative 

regularization method, which means the regularization 

procedure is performed during the iterative processes and thus 

the determination of optimal regularization conditions is not 

needed. The CGM derives from the perturbation principles and 

transforms the inverse problem to the solution of three problems, 

namely, the direct, sensitivity and the adjoint problem. Chen et 

al. [3] estimated the unknown heat flux of a pin fin base in two-

dimensional problem by  

 

 

applying CGM with the adjoint equation. He presented that the 

effect of an initial guess value on estimating the  

heat flux with CGM is small. Huang and Wang [5] solved a 

three-dimensional (3-D) transient inverse heat conduction 

problem using the CGM and the general purpose commercial 

code CFX4.2-based inverse algorithm to estimate the unknown 

boundary heat flux in any 3-D irregular domain. Huang and 

Ozisik [8] used CGM to determine the unknown time wise 

variation of the strength of a plane surface heat source in one 

dimensional coordinates. Neto and Ozisik also applied CGM to 

estimate the time wise variation of the strength of single heat 

source [9] in 2D conduction medium and simultaneous 

estimation of time wise variation of the strength of two heat 

sources [10] in 1D conduction medium. However there are a few 

drawbacks with the CGM as they can converge to local minima 

and there is a requirement of initial guess value. CGM shows 

difficulty in estimation of sharp peaks or discontinuities on the 

functional variation of the source strength. Sawaf and Ozisik 

[22, 23] applied Levenberg–Marquardt (LM) algorithm to 

estimate linearly temperature dependent thermal conductivities 

of orthotropic solid. 

Search-based methods or stochastic methods like 

genetic algorithm (GA) and differential evolution algorithm 

(DEA) have outstanding characteristics. These methods have 

advantages over gradient method for (i) non-requirement of 

initial guess and (ii) absence of complex formulations of 

sensitivity, adjoint and gradient equations that are inherently 

present in the gradient based methods. Moreover these search 

based methods converge to a global value. In recent years, 

stochastic methods have become a popular optimization tool for 

many areas of research. However, little work has been done in 

the inverse heat transfer problems. Raudensky et al. [24] studied 

the one dimensional inverse heat conduction problem for 

estimation of unknown material properties. Two artificial 

intelligence mechanisms, neural network and genetic algorithm, 

were applied in doing the inverse task. Both approaches can lead 

to a solution without stability problem. An inverse analysis 

based on an improved genetic algorithm to estimate an unknown 

transient heat source in one dimension heat conduction problem 

was presented by Liu [12]. Lobato et al. [13] used DEA for 

simultaneous estimation of source strength and position in one 

dimension conduction problem. 
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The main difference between the GA and DEA is the 

mutation scheme that makes DEA self adaptive. In DEA, all 

solutions have the same chance of being selected as parents 

without dependence of their fitness value. DEA employs a 

greedy selection process. The better one of new solution and its 

parent wins the competition providing significant advantage of 

converging performance over genetic algorithms. DEA mainly 

has three advantages; finding the true global minimum 

regardless of the initial parameter values, fast convergence, and 

using a few control parameters. Being simple, fast, easy to use, 

very easily adaptable for integer and discrete optimization, quite 

effective in nonlinear constraint optimization including penalty 

functions and useful for optimizing multimodal search spaces 

are the other important features of DEA. 

The combined application of two or more methods 

called hybrid method has proved to be very powerful for solving 

IHTP. Chen and Chang [6] applied Laplace transform method 

and the finite element method in1D conduction problem and 

Chen et al. [7] applied Laplace transform method and the finite 

difference method in 2D conduction problem to estimate surface 

conditions. 

 

The estimation of strength and position of internal heat 

source exhibits a practical strong appeal in areas such as 

chemical and mechanical engineering. Some of the available 

works in the literature determine either the location or the 

strength of a heat source [14]. There are also a few literatures 

where simultaneous estimation of location and strength [13, 15-

21] of the source were determined. These studies are limited to 

conduction heat transfer only. Karami and Hematiyan [14] 

considered 2D heat conduction case to estimate the location or 

the strength of multiple point heat sources. Only one of these 

two variables was estimated, the other being known utilizing the 

boundary element method (BEM). Lobato et al. [13] applied 

DEA and Neto and Ozisik [15] applied CGM in one dimensional 

heat conduction problem while Khachfe and Jarny [16] applied 

the Finite element method (FEM) associated to CGM in 2D heat 

conduction problem to estimate the location and strength of 

point heat sources simultaneously. Lefèvre and Niliot [17-21] 

also estimated simultaneously the location and strength of heat 

sources in heat conduction problems by applying BEM. 

II. CONCEPT OF INVERSE HEAT 

TRANSFER PROBLEM 

The concept of IHTP is explained considering IHTP of 

boundary condition in 1D heat conduction problem which is one 

of the objectives of the present work. Figure 1.1 represents the 

schematic of 1D surface with boundary conditions. At time t = 0 

the initial temperature of the surface is Ti. For time t > 0 a 

transient heat flux q(t) is applied on the boundary at x = 0, while 

the boundary at x = l is insulated.  

 

The mathematical formulation of this heat conduction problem 

is given by:  
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T = Ti          in 0 ≤ x ≤ l, for t = 0  (1.4)  
 
where, T is temperature distribution inside the surface of length l 

while k, ρ and cp  are thermal conductivity, density and specific 

heat respectively. Solution of the above model gives temperature 

profile T(x,t) inside the surface. But in the real life situations, 

where it is not possible to measure the causal factors (surface 

temperature or boundary heat flux) directly, however the 

temperature data can be obtained by placing few sensors inside; 

a natural problem becomes to predict the unknown causal factor. 

This leads to the inverse heat transfer problem (IHTP).  

 

Now taking the same example as above, the Eqs. (1.1-

1.4) can be written in dimensionless form as: 
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θ = θi        in 0 < X < 1, for τ = 0                              (1.8)  
 

where various dimensionless groups are defined as: 

 

Fig.  Error! No text of specified style in document..1. Schematic of 1D heat conduction 

model. 
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where Tref is reference temperature value and θ is dimensionless 

temperature distribution inside the surface of dimensionless 

length L = 1.0. To predict the unknown flux Q(τ), a quite natural 

hit and trial solution is - guess the flux and see how best the 

measured temperatures match with its direct problem solution 

profile. By the theory of statistical estimation, the optimal 

estimator (in general settings) is the one which minimizes the 

mean square norm of prediction errors and is called minimum 

mean square error estimator. Therefore the steps involved in the 

solution of an IHTP are as below: 

(i)Start with an initial guess of the unknown flux. 

(ii)Solve the direct heat equation to formulate the temperature 

profile. 

(iii)Find the prediction error. 

(iv)Minimize the mean square norm and hence optimize the 

guessed flux in a number of iterations. 

 

From the above description of solution method, an 

IHTP gets converted to an optimization problem with objective 

as the minimization of the mean square norm of prediction 

errors and the constraint as the direct heat equation (1.5). 

The temperature is measured by sensors at a number of locations 

(X = Xm), at discrete fixed time intervals. For the sake of 

analysis, the measurements are supposed to be continuous and a 

function of time θm(τ). If θm(τ) are free from measurement errors, 

then any guess boundary heat flux Q
*
(τ), which satisfies the 

equation. 

 

θm(τ)=θ(Xm,τ:Q*(τ))               (1.9) 

is the exact inverse solution. This implies that as the total mean 

square difference for all the sensors, given by 

* 2
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Decreases, the guessed flux Q
*
(τ) approaches the exact solution 

Q(τ). Therefore J(Q) is called the objective or performance 

function. Here M is the total number of measurements. Hence 

the inverse heat transfer problem becomes the following 

optimization problem 

                               Minimize  J(Q) 

Subject to              
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To solve this optimization problem, any method of optimization 

can be used. 

 

 

 

III.  RESULT AND DISCUSSION 

To examine the accuracy and computational efficiency 

of the algorithms for the estimation of the boundary heat flux in 

conduction problems different profiles of the heat flux, including 

a smooth function and a step function are selected. The effect of 

number of measurements M and error in measurements in 1D 

case on the accuracy of estimations is investigated. 

The two different spacewise variations for the boundary heat 

flux of the following forms are considered. 
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 (1.12) 
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Q
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           (1.13) 

where i is the indices in X direction. The energy equation, 

sensitivity equation and the adjoint equations are discredited 

using the FVM. The dimensionless length of slab is 1.0 and θi = 

0. The number of control volumes considered are 100 with step 

size ∆X = 0.01.  

The average percentage error is calculated as: 

 

% error =  1
M 	

( ) ( )ex estQ x Q x−

( )exQ x




��

x 100 

 (1.14) 

where Qex and Qest are the exact and estimated heat flux values 

and D is the number of time steps. For the estimation, a single 

sensor is placed in the slab at X = 4∆X.   

The effects of the number of measurements on the 

accuracy of the estimation, for sensors located at X = 10∆X is 

investigated. Sensors are arranged with dimensionless spacing of 

20∆Y between each two sensors. Similar arrangements are 

assumed for M = 19, 9 and 6 sensors with corresponding 

dimensionless spacing of 5∆Y, 10∆Y and 15∆Y, respectively. 

The test results shown in Fig 1.2 illustrate estimation of actual 

heat flux of triangular profile function with the number of 

transversal measurements M = 19, 9 and 6. Quantitatively, the 

average percentage error between actual and estimated 

temperature is 1.01%, 1.11% and 1.21%, with M = 19, 9 and 6 

respectively. The average percentage error is calculated as: 

% error =  


 ∑ ( ) ( )ex estQ x Q x−

( )exQ x


��
 x 100 (1.15) 
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Fig.  1.2. Plots of estimated heat flux profile for a triangular input with 

variations in number of sensors embedded at transverse position. 

 

 

Fig.  1.3. Plots of estimated heat flux profile for a sine profile with variations in 

axial locations of thermocouples embedded. 

Figure 1.3 refers to the case where all sensors are 

assumed to be embedded at the center line (Y = 50∆Y) along X 

direction. Six sensors (M = 6) are arranged corresponding to 

dimensionless spacing of 15∆X. Similar arrangements are 

assumed with M = 19 and 9 corresponding to dimensionless 

spacing of 5∆X and 10∆X, respectively. The results are shown in 

the same figure. The results show that at boundary the estimated 

profile deviates much from exact profile. The reason is that the 

heat flux originated at both regions is unlikely to diffuse into the 

centerline region given that the heat flux and flow fields are still 

developing. That is, there is almost no functional relationship 

between the measurement and estimated quantities. Therefore 

the estimations are not as good as compared to estimations of 

sensors embedded at transverse locations. This is also expected 

as the estimation is performed for a transverse heat flux profile 

and hence, the measurements taken in the same transverse 

direction are a better choice. With M = 19, the average 

percentage error between actual and estimated heat flux is 5%, 

while with M = 9 and 6, it is approximately 5.6%. 

Figs.1.4 shows the result of step functional form with 

double discontinuity. It illustrates the effect of the number of 

measurements on the accuracy of the estimation, for sensor 

located at X = 20∆X. The number of transversal measurements 

considered here are M = 24 and 9 correspond to dimensionless 

spacing of 4∆Y and 10∆Y, respectively. This case presents a very 

difficult case for an inverse analysis because the gradient of 

objective function is difficult to determine due to discontinuity 

present in the variation of the heat flux function. Even with 

twenty-four errorless measurements, the exact heat flux profile 

could not be fully recovered. 

 

 

Fig.  1.4. Plots of estimated heat flux profile for a step input with variations in 

number of sensors embedded double discontinuity. 

IV. CONCLUSION 

The CGM was successfully applied for the solution of an inverse 

heat conduction problem to determine the unknown heat flux 

profile in a solid metal plate. The formulation of the inverse 

problem is presented in detail. Several test cases involving 

different profiles of heat flux distribution, different numbers and 

locations of sensors and measurement with artificial error are 

considered. Following are the conclusions: 

(i)Four sensors (M = 4) are insufficient to produce good results 

to estimate heat flux while a single sensor could also give 

correct estimation of  transient heat flux if the transient 

measurements are frequent. 

(ii)The estimations of heat flux are not as good with sensors 

embedded along centerline as compared to sensors embedded at 

transverse locations. 

(iii)With the errors in sensors included, higher numbers of 

measurements do not guarantee better prediction.  

(iv)In general the accuracy of prediction improves when the 

sensors are located close to the boundary, whose description is 

to be predicted. However, if the sensors are kept very close to 

the boundary, where the gradients are high, the accuracy is 

found to be poor. 

(v)The CGM is superior in terms of convergence speed in cases 

where measurements are available at each time step. 
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