
ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 2_April_2014

www.ijrt.org 28

BENCHMARKING CASSANDRA
Prof B.B.Gite

1
, Megha Shah

2
, Poonam Pany

3
, Priyanka Makhija

4

1,2,3,4
Dept. of Computer Engineering, Sinhgad Academy of Engineering, University of Pune, Pune, India

Abstract—Today, with the increasing need for storage of

unstructured data, the need of NoSql databases have increased.

The most widely used NoSql database is the column based

Cassandra. While there has been growth in the usage of

Cassandra, evaluating its performance becomes important and

crucial to applications using Cassandra on a large scale for

storage. The popularity of NoSQL databases (especially

Cassandra) has been increasing day by day. Now, as many

companies are developing Cassandra applications, they may

need new tools to monitor database performance efficiently.

Developers have difficulty optimizing something they can't see.

When problems related to performance occur and proper

analysis is needed, the statistical data generated by monitoring

tool will be of a lot help. To optimize NoSQL applications,

developers need to have an idea about how the database is

behaving in different working scenarios. Cassandra is easy to

configure, but for the proper performance tuning it is necessary

to study the performance requirements for a particular

application. This can be judged by monitoring tool. The paper

describes the design of such monitoring tool and the results

generated ie. statistics and graphs. The tool will be used

primarily for low end machines as they are cost effective.

Keywords: Distributed databases, NoSQL databases, Database

Performance, Parameters of performance.

I. INTRODUCTION

Cassandra is NoSQL distributed database system which is

known for managing large amount of distributed data. It

provides high availability without single point of failure, the

reason behind this is that it treats failure of node as norm

rather than exception. It is also famous for high write

throughput without harming read efficiency. As it is

distributed database it replicates data to keep search latency

small. Every keyspace when created, it is assigned a

replication factor. Cassandra provides replication polices

namely rack aware, rack unaware and data center aware

[1].The data model of Cassandra is column oriented, columns

together form column family. Column family is nothing but

collection of columns associated with the key. Column has a

name, value and timestamp. Different rows in

the same column family may not have same number/type of

columns. Super- column family is like column family within a

column family. Every super column family is the collection of

similar/related columns [3]. Cassandra dynamically partitions

the data across the cluster and it provides different

partitioning methods like random partitioner and order

preserving partitioner. Cassandra is much easier to configure

compared to other distributed database. It also allows fine

performance tuning as per changing requirements. Mainly

Cassandra system can be contains three layers - core layer,

middle layerand top layer. The top layer is allows efficient,

consistent reads and writes using a simple API. Cassandra

provides simple queries insert, get & delete. The Cassandra

API is made up of simple getter and setter methods and has

no reference to the database distributed nature. Hinted hand-

off is also the part of top layer. This occurs when a node goes

down - the successor node becomes a coordinator and

temporarily receives and stores write activities (hint) for

downed node. When downed node becomes live, this

information is given(handed) by coordinator node to live

node. The middle layer contains functions for handling the

data that is being written into the database. Compaction is the

process which tries to combine keys and columns to increase

the performance of the system by freeing the memory. The

different ways of storing data such as Memtable and SSTable

are also handled here[3]. The core layer deals with the

distributed nature of the database, and contains functions for

communication between nodes, the state of the cluster as a

whole (including failure detection) and replication between

nodes

Table 1:- Cassandra Layers

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 2_April_2014

www.ijrt.org 29

II. ROLE OF YCSB

We have tested the core set of YCSB predefined workloads

to evaluate different aspects of a system’s performance. We

use a package which is a collection of related workloads.

Each workload represents a particular mix of read/write

operations, data sizes, request distributions, and so on, and

can be used to evaluate systems at one particular point in the

performance space.[18] A package, which includes multiple

workloads, examines a broader slice of the performance

space.

While the core package examines several interesting

performance axes, our goal was to examine a wide range of

workload characteristics, in order to understand in which

portions of the space of workloads systems performed well or

poorly. For example, some systems may be highly optimized

for reads but not for writes, or for inserts but not updates, or

for scans but not for point lookups. The workloads in the core

package can be chosen to explore these tradeoffs directly.

The workloads in the core package are a variation of the same

basic application type. In this application, there is a table of

records, each with F fields. Each record is identified by a

primary key, which is a string like “user234123”. Each field

is named field0, field1 and so on. The values of each field are

a random string of ASCII characters of length L. For

example, in the results reported in this paper, we construct

1,000 byte records by using F = 10 fields, each of

L = 100 bytes. Each operation against the data store is

randomly chosen to be one of:

• Insert: Insert a new record.

• Update: Update a record by replacing the value of one

Field.

• Read: Read a record, either one randomly chosen field

or all fields.

• Scan: Scan records in order, starting at a randomly

chosen record key.

The number of records to scan is randomly chosen. For scan

specifically, the distribution of scan lengths is chosen as part

of the workload. Thus, the scan() method takes an initial key

and the number of records to scan.

The various combinations are shown in Table. Although we

do not attempt to model complex applications precisely (as

discussed above), we list a sample application that generally

has the characteristics of the workload. [34]Loading the

database is likely to take longer than any individual

experiment. All the core package workloads use the same

dataset, so it is possible to load the database once and then

run all the workloads. However, workloads A and B modify

records, and D and E insert records. If database writes are

likely to impact the operation of other workloads (e.g., by

fragmenting the on-disk representation) it may be necessary

to re-load the database.

III. DESIGN

The nodetool utility in Cassandra allows to collect Cassandra

performance statistics. Using this functionality we can extract

the performance data onto a file called as the LOG file. The

goal is to highlight the performance of the 2 Cassandra

versions 1.2.13 and 2.0.4 against each other i.e.

benchmarking. Also commands like TOP, SAR are useful to

collect statistics. As there is built in support of performance

counters that provides information about how system is

doing. Recoding the information from these

Counters is very much necessary for troubleshooting in the

development phase of application. The main performance

parameters we should consider here are Throughput,

Runtime, Average latencies for 1000 and 100000 numbers of

records for both Cassandra versions against 5 core YCSB

workloads.

So here we have to write total five shell scripts to collect the

statistics repeatedly after some interval of time and store it in

the file. We have to write a program which will read the files

and display statistics graphically.

IV. GUI

The GUI has been designed in JSP in order to display the

output of the tool in the form of graphs for better

understanding of the benchmarking results. The GUI is easy

 Table 2:- YCSB Workloads

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 2_April_2014

www.ijrt.org 30

to use and user friendly and it shows various scenarios,

namely:

1000ClusterRecords

1000ClusterRecords (Avg Latency/Records) single node and

cluster

1000ClusterRecords (Throughput and Runtime)

1000ClusterRecords (Avg Latency) Parameterized workload

single node and cluster

1000Records (1.2.13 vs 2.0.4) Throughput and Runtime

1000Records (1.2.13 vs 2.0.4) Avg Latency/record

1000Records (1.2.13 vs 2.0.4) Parameterized workload

Throughput and Runtime

1000Records (1.2.13 vs 2.0.4) Parameterized workload Avg

Latency/record

Similarly for 100000 records

V. RESULTS

Some of the screenshots of the GUI showcasing the

benchmarking results are as below:

Figure 1:-1000ClusterRecords (Throughput and

Runtime)

Figure 2:-1000ClusterRecords (Avg Latency/Records)

single node and cluster

Figure 3:-1000Records (1.2.13 vs 2.0.4) Throughput and

Runtime

Figure 4:-1000Records (1.2.13 vs 2.0.4) Parameterized

workload Throughput and Runtime

Figure 5:-100000ClusterRecords (Avg Latency/Records)

single node and cluster

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 2_April_2014

www.ijrt.org 31

Figure 6:-100000Records (1.2.13 vs 2.0.4) Throughput

and Runtime

Figure 7:-100000Records (1.2.13 vs 2.0.4) Parameterized

workload Avg Latency/record

VI. LIMITATIONS

The tool developed is limited to two Cassandra versions

(1.2.13 and the latest 2.0.4) and can perform benchmarking

for the same. The system may fail in following scenarios

1) Network failure: The network failure stands for breakage

or saturation of link between two nodes and if the node goes

down due to power failure.

2) System Crash: The System may crash due to excessive

load on a specific machine.

VII. CONCLUSION

We have developed a tool for benchmarking Cassandra(v

1.2.13 vs 2.0.4) under 5 core workloads and parameterized

workloads on a single node machine as well as on a

Cassandra cluster with the desired replication factor. We have

developed a user friendly and easy to understand GUI for

showcasing these comparisons in the forms of various graphs.

The tool showcases the Cassandra performance under various

performance parameters such as throughput, latency, runtime.

This will help application developers determine whether

Cassandra is suitable for their application.

VIII. REFERENCES

[1] Amazon SimpleDB. http://aws.amazon.com/simpledb/.

[2]ApacheCassandra.http://incubator.apache.org/cassandra

[3] Apache CouchDB. http://couchdb.apache.org/.

[4] Apache HBase. http://hadoop.apache.org/hbase/.

[5]Dynomite Framework. ttp://wiki.github.com/cliffmoon/-

dynomite/dynomite-framework.

[6] Google App Engine. http://appengine.google.com.

[7] Hypertable. http://www.hypertable.org/.

[8] mongodb. http://www.mongodb.org/.

[9] Project Voldemort. http://project-voldemort.com/.

[10] Solaris FileBench.

http://www.solarisinternals.com/wiki/index.php/FileBench.

[11] SQL Data Services/Azure Services Platform.

http://www.microsoft.com/azure/data.mspx.

[12] Storage Performance Council.

http://www.storageperformance.org/home.

[13]Yahoo!QueryLanguage.http://developer.yahoo.com/yql

[14] A. Arasu et al. Linear Road: a stream data management

benchmark. In VLDB, 2004.

[15] F. C. Botelho, D. Belazzougui, and M. Dietzfelbinger.

Compress, hash and displace. In Proc. of the 17th European

Symposium on Algorithms, 2009.

[16] F. Chang et al. Bigtable: A distributed storage system for

structured data. In OSDI, 2006.

[17] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data

serving platform. In VLDB, 2008.

[18] G. DeCandia et al. Dynamo: Amazon’s highly available

key-value store. In SOSP, 2007.

[19] D. J. DeWitt. The Wisconsin Benchmark: Past, present

and future. In J. Gray, editor, The Benchmark Handbook.

Morgan Kaufmann, 1993.

[20] I. Eure. Looking to the future with Cassandra.

http://blog.digg.com/?p=966.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture and the

Feasibility of consistent, available, partition-tolerant web

services. ACM SIGACT News, 33(2):51–59, 2002.

[22] J. Gray, editor. The Benchmark Handbook For Database

and Transaction Processing Systems. Morgan Kaufmann,

1993.

[23] J. Gray et al. Quickly generating billion-record synthetic

databases. In SIGMOD, 1994.

ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print) International Journal of Research & Technology, Volume 2, Issue 2_April_2014

www.ijrt.org 32

[24] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra:

A structured storage system on a P2P network. In SIGMOD,

2008.

[25] B. C. Ooi and S. Parthasarathy. Special issue on data

Management on cloud computing platforms. IEEE Data

Engineering Bulletin, vol. 32, 2009.

[26] A. Pavlo et al. A comparison of approaches to large-

scale data analysis. In SIGMOD, 2009.

[27] R. Rawson. HBase intro. In NoSQL Oakland, 2009.

[28] A. Schmidt et al. Xmark: A benchmark for XML data

Management. In VLDB, 2002.

[29] R. Sears, M. Callaghan, and E. Brewer. Rose:

Compressed, log-structured replication. In VLDB, 2008.

[30] M. Seltzer, D. Krinsky, K. A. Smith, and X. Zhang. The

case for application-specific benchmarking. In Proc. HotOS,

1999.

[31] P. Shivam et al. Cutting corners: Workbench automation

for server benchmarking. In Proc. USENIX Annual Technical

Conference, 2008.

[32] M. Stonebraker et al. C-store: a column-oriented DBMS.

In VLDB, 2005.

[33] B. White et al. An integrated experimental environment

for distributed systems and networks. In OSDI, 2002.

[34] K. Yocum et al. Scalability and accuracy in a large-scale

network emulator. In OSDI, 2002.

