ISSN: 2321-7529(Online) | ISSN:2321-7510 (Print)

International Journal of Research & Technology, Volume 2, Issue 2_April_2014

BENCHMARKING CASSANDRA
Prof B.B.Gite', Megha Shah’, Poonam Pany’, Priyanka Makhija*
1’2’3’4Dept. of Computer Engineering, Sinhgad Academy of Engineering, University of Pune, Pune, India

Abstract—Today, with the increasing need for storage of
unstructured data, the need of NoSql databases have increased.
The most widely used NoSql database is the column based
Cassandra. While there has been growth in the usage of
Cassandra, evaluating its performance becomes important and
crucial to applications using Cassandra on a large scale for
storage. The popularity of NoSQL databases (especially
Cassandra) has been increasing day by day. Now, as many
companies are developing Cassandra applications, they may
need new tools to monitor database performance efficiently.
Developers have difficulty optimizing something they can't see.
When problems related to performance occur and proper
analysis is needed, the statistical data generated by monitoring
tool will be of a lot help. To optimize NoSQL applications,
developers need to have an idea about how the database is
behaving in different working scenarios. Cassandra is easy to
configure, but for the proper performance tuning it is necessary
to study the performance requirements for a particular
application. This can be judged by monitoring tool. The paper
describes the design of such monitoring tool and the results
generated ie. statistics and graphs. The tool will be used
primarily for low end machines as they are cost effective.

Keywords: Distributed databases, NoSQL databases, Database
Performance, Parameters of performance.

I. INTRODUCTION

Cassandra is NoSQL distributed database system which is
known for managing large amount of distributed data. It
provides high availability without single point of failure, the
reason behind this is that it treats failure of node as norm
rather than exception. It is also famous for high write
throughput without harming read efficiency. As it is
distributed database it replicates data to keep search latency
small. Every keyspace when created, it is assigned a
replication factor. Cassandra provides replication polices
namely rack aware, rack unaware and data center aware
[1].The data model of Cassandra is column oriented, columns
together form column family. Column family is nothing but
collection of columns associated with the key. Column has a
name, value and timestamp. Different rows in

www.ijrt.org

the same column family may not have same number/type of
columns. Super- column family is like column family within a
column family. Every super column family is the collection of
similar/related columns [3]. Cassandra dynamically partitions
the data across the cluster and it provides different
partitioning methods like random partitioner and order
preserving partitioner. Cassandra is much easier to configure
compared to other distributed database. It also allows fine
performance tuning as per changing requirements. Mainly
Cassandra system can be contains three layers - core layer,
middle layerand top layer. The top layer is allows efficient,
consistent reads and writes using a simple API. Cassandra
provides simple queries insert, get & delete. The Cassandra
API is made up of simple getter and setter methods and has
no reference to the database distributed nature. Hinted hand-
off is also the part of top layer. This occurs when a node goes
down - the successor node becomes a coordinator and
temporarily receives and stores write activities (hint) for
downed node. When downed node becomes live, this
information is given(handed) by coordinator node to live
node. The middle layer contains functions for handling the
data that is being written into the database. Compaction is the
process which tries to combine keys and columns to increase
the performance of the system by freeing the memory. The
different ways of storing data such as Memtable and SSTable
are also handled here[3]. The core layer deals with the
distributed nature of the database, and contains functions for
communication between nodes, the state of the cluster as a
whole (including failure detection) and replication between
nodes

Core Middle Top

Messaging [ndexes Hinted handoff
service Compaction | Read repair
Failure detection | Commit log | Monitoring
Cluster state Memtable | Admin tools

Partitioner SSTable

Replication

Table 1:- Cassandra Layers

28

ISSN: 2321-7529(Online) | ISSN:2321-7510 (Print)

International Journal of Research & Technology, Volume 2, Issue 2_April_2014

Workload

Operations

Record selection

Application example

A

Update heavy

Read: 50%
Update: 50%

Zipfian

Session store recording recent actions in a user session

B—Read heavy Read: 95% Zipfian Photo tagging; add a tag is an update, but most operations
Update: 5% are to read tags
C—Read only Read: 100% Zipfian User profile cache, where profiles are constructed elsewhere
(e.g., Hadoop)
D—Read latest Read: 95% Latest User status updates; people want to read the latest statuses

Insert: 5%

E—=Short ranges

Scan: 95%

Insert: 5%

Zipfian /Uniform*

Threaded conversations, where each scan is for the posts in a
given thread (assumed to be clustered by thread id)

Table 2:- YCSB Workloads

II. ROLE OF YCSB

We have tested the core set of YCSB predefined workloads
to evaluate different aspects of a system’s performance. We
use a package which is a collection of related workloads.
Each workload represents a particular mix of read/write
operations, data sizes, request distributions, and so on, and
can be used to evaluate systems at one particular point in the
performance space.[18] A package, which includes multiple
workloads, examines a broader slice of the performance
space.

While the core package examines several interesting
performance axes, our goal was to examine a wide range of
workload characteristics, in order to understand in which
portions of the space of workloads systems performed well or
poorly. For example, some systems may be highly optimized
for reads but not for writes, or for inserts but not updates, or
for scans but not for point lookups. The workloads in the core
package can be chosen to explore these tradeoffs directly.
The workloads in the core package are a variation of the same
basic application type. In this application, there is a table of
records, each with F fields. Each record is identified by a
primary key, which is a string like “user234123”. Each field
is named fieldO, field1 and so on. The values of each field are
a random string of ASCII characters of length L. For
example, in the results reported in this paper, we construct
1,000 byte records by using F = 10 fields, each of

L = 100 bytes. Each operation against the data store is
randomly chosen to be one of:

* Insert: Insert a new record.

» Update: Update a record by replacing the value of one
Field.

* Read: Read a record, either one randomly chosen field
or all fields.

* Scan: Scan records in order, starting at a randomly
chosen record key.

The number of records to scan is randomly chosen. For scan
specifically, the distribution of scan lengths is chosen as part
of the workload. Thus, the scan() method takes an initial key
and the number of records to scan.

www.ijrt.org

The various combinations are shown in Table. Although we
do not attempt to model complex applications precisely (as
discussed above), we list a sample application that generally
has the characteristics of the workload. [34]Loading the
database is likely to take longer than any individual
experiment. All the core package workloads use the same
dataset, so it is possible to load the database once and then
run all the workloads. However, workloads A and B modify
records, and D and E insert records. If database writes are
likely to impact the operation of other workloads (e.g., by
fragmenting the on-disk representation) it may be necessary
to re-load the database.

III. DESIGN

The nodetool utility in Cassandra allows to collect Cassandra
performance statistics. Using this functionality we can extract
the performance data onto a file called as the LOG file. The
goal is to highlight the performance of the 2 Cassandra
versions 1.2.13 and 2.04 against each other i.e.
benchmarking. Also commands like TOP, SAR are useful to
collect statistics. As there is built in support of performance
counters that provides information about how system is
doing. Recoding the information from these

Counters is very much necessary for troubleshooting in the
development phase of application. The main performance
parameters we should consider here are Throughput,
Runtime, Average latencies for 1000 and 100000 numbers of
records for both Cassandra versions against 5 core YCSB
workloads.

So here we have to write total five shell scripts to collect the
statistics repeatedly after some interval of time and store it in
the file. We have to write a program which will read the files
and display statistics graphically.

IV. GUI

The GUI has been designed in JSP in order to display the
output of the tool in the form of graphs for better
understanding of the benchmarking results. The GUI is easy

29

ISSN: 2321-7529(Online) | ISSN:2321-7510 (Print)

to use and user friendly and it shows various scenarios,

namely:
1000ClusterRecords

1000ClusterRecords (Avg Latency/Records) single node and

cluster

1000ClusterRecords (Throughput and Runtime)
1000ClusterRecords (Avg Latency) Parameterized workload

single node and cluster

1000Records (1.2.13 vs 2.0.4) Throughput and Runtime
1000Records (1.2.13 vs 2.0.4) Avg Latency/record
1000Records (1.2.13 vs 2.0.4) Parameterized workload

Throughput and Runtime

1000Records (1.2.13 vs 2.0.4) Parameterized workload Avg

Latency/record
Similarly for 100000 records

V. RESULTS

Some of the screenshots of the GUI showcasing the

benchmarking results are as below:

Thoughpuops e

*

S

o

opsfzec

wges mnm

Runtime(seq) =

woe m

Figure 1:-1000ClusterRecords (Throughput and

.
Runtime)
Average Latency Cassandra 1.2.13 # Average Latency Cassandra 1.2.13 Cluster
'l Recerds Average Latency | Records = '. Records |Average Latency / Records =
4+ Average Latency Sourez 4 bverage Latency Source:
T 2500 T ——— /‘\ 2000
2000 N
1500
i a0 00 & H
a A
H JLEO
1 oe & g
é I | 11K | |T
0)
\ \\-4\8@#%'\.\\0;\ \e 9’\9‘;?&\\\6’54’5;#* \\.x,\
4“ “) \‘J “D &J ‘é N Q 5\ EJ ’; 5‘(& A'é R \fnc? R § A‘ & :5‘(¢
& \s}»@@*‘b @,AS‘ FEEIESFEET IS
E"a’o“g Je@efu*q& Fids FPETIES
S & & F ¢SS S gE & FEE
s Fe & & & &8 F&¢
FEE § g &4 £
§ § § E
«(‘ :f(g
& &

Figure 2:-1000ClusterRecords (Avg Latency/Records)
single node and cluster

www.ijrt.org

International Journal of Research & Technology, Volume 2, Issue 2_April_2014

@ Throughput fs)

Throughput(cps,sec) =

1290
1000
3 o7
g
st0
) ‘ II ‘
0
pwe | Rext sot | e
Vo oy i el g wm'\
werkiox nerkdoat workiozs

W Casers 1213 @ Cossancie 202 |

4 Runtime 5

Runtime(sec) =

o

EE
Rzt e srort

o W b s
werdoxd worklced wortloac wite

0 Cassendra 1213 @ Cassandra 20.4

Figure 3:-1000Records (1.2.13 vs 2.0.4) Throughput and

.
Runtime
@ Throughput with Params -threads 10 -target 100
-timeseries.granularity=2000ms
Throughputiops/seq) =
Source
12: 123k
100 10k
v 75 75k
i u
H i
g
° w0 5k
25 25k
0 o
Update Reac Read Read Short Read-
heayy mosty orly ltest rarges modiiy-
workoac workload warkload write e
".Cassandral 213 W Casandra204 |

24 Runtime with Params -threads 10 -target 100

-timeseries.granularity=2000ms

k
Update Read Read Read Short Read-

Runtime(sec)
Source

hewy mosly oy Best ramges modiy-
orkload warkload worklcad write

| W Cassandra 1213 B Cassandra 204

Figure 4:-1000Records (1.2.13 vs 2.

0.4) Parameterized

workload Throughput and Runtime

@ Throughput 4

Throughputiops/sec) =

E She | Reat-
fanges modiy-
vornd workoac wie

dr21 213 B Cassandral 213 Cuser |

Runtime

Runtime(sec)

a0c

¢

| |]| " i i "

Ue Rt e

[cassnsral 213 B Cassonrel 213 s |

Figure 5:-100000ClusterRecords (Avg Latency/Records)

single node and clu

ster

30

ISSN: 2321-7529(Online) | ISSN:2321-7510 (Print)

5/5ec)

i wrcumpullm
.....

= Run metset) =

i

i Son

I- I II I- I Il
vt
iy

o rie

Figure 6:-100000Records (1.2.13 vs 2.0.4) Throughput
and Runtime

Average Latency Cassandra 1.2.1
100 -target 1000 -timeseries.granularity=2000ms

Average Latency / Records
Source

0 Records
Average Latentv

PP PP RSP IR

\\\\\ Uy

& é'\é"‘\,‘a Aa\wfo(«‘F«“A«‘@
&.;‘ F aa’\ $§
fn\‘@s@s@bb(\ ff
Fled & M’Mw

sﬂ)&@@@ ?q\ &F

K
ﬁw & n‘ LA

3with Params -threads

200000

150000

100000 &
H

50000

#

\
R

Average Latency Cassandra 2.0.4 with Params -threads
100 -target 1000 -timeseries.granularity=2000ms

Average Latency / Records
Source

W Records
+* nvmge Latency

...... 200000

.
v 200000 150000

n
1

N N N
& Ly
arv“‘b«#bgfm“«“““
‘«43‘« &
SAELE
,,«
@sés@ac‘ fi
t"‘ss $ o 4))\“
& (3\\ 4“
SFes FE
§& &

Figure 7:-100000Records (1.2.13 vs 2.0.4) Parameterized
workload Avg Latency/record

VI. LIMITATIONS

The tool developed is limited to two Cassandra versions
(1.2.13 and the latest 2.0.4) and can perform benchmarking
for the same. The system may fail in following scenarios

1) Network failure: The network failure stands for breakage
or saturation of link between two nodes and if the node goes
down due to power failure.
2) System Crash: The System may crash due to excessive
load on a specific machine.

www.ijrt.org

International Journal of Research & Technology, Volume 2, Issue 2_April_2014

VII. CONCLUSION

We have developed a tool for benchmarking Cassandra(v
1.2.13 vs 2.0.4) under 5 core workloads and parameterized
workloads on a single node machine as well as on a
Cassandra cluster with the desired replication factor. We have
developed a user friendly and easy to understand GUI for
showcasing these comparisons in the forms of various graphs.
The tool showcases the Cassandra performance under various
performance parameters such as throughput, latency, runtime.
This will help application developers determine whether
Cassandra is suitable for their application.

VIII. REFERENCES

[1] Amazon SimpleDB. http://aws.amazon.com/simpledb/.
[2]ApacheCassandra.http://incubator.apache.org/cassandra
[3] Apache CouchDB. http://couchdb.apache.org/.

[4] Apache HBase. http://hadoop.apache.org/hbase/.
[5S]Dynomite Framework. ttp://wiki.github.com/cliffmoon/-
dynomite/dynomite-framework.

[6] Google App Engine. http://appengine.google.com.

[7] Hypertable. http://www.hypertable.org/.

[8] mongodb. http://www.mongodb.org/.

[9] Project Voldemort. http://project-voldemort.com/.

[10] Solaris FileBench.
http://www.solarisinternals.com/wiki/index.php/FileBench.
[11] SQL Data Services/Azure Services Platform.
http://www.microsoft.com/azure/data.mspx.

[12] Storage Performance Council.
http://www.storageperformance.org/home.
[13]Yahoo!QueryLanguage.http://developer.yahoo.com/yql
[14] A. Arasu et al. Linear Road: a stream data management
benchmark. In VLDB, 2004.

[15] F. C. Botelho, D. Belazzougui, and M. Dietzfelbinger.
Compress, hash and displace. In Proc. of the 17th European
Symposium on Algorithms, 2009.

[16] F. Chang et al. Bigtable: A distributed storage system for
structured data. In OSDI, 2006.

[17] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data
serving platform. In VLDB, 2008.

[18] G. DeCandia et al. Dynamo: Amazon’s highly available
key-value store. In SOSP, 2007.

[19] D. J. DeWitt. The Wisconsin Benchmark: Past, present
and future. In J. Gray, editor, The Benchmark Handbook.
Morgan Kaufmann, 1993.

[20] I. Eure. Looking to the future with Cassandra.
http://blog.digg.com/?p=966.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture and the
Feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2):51-59, 2002.

[22] J. Gray, editor. The Benchmark Handbook For Database
and Transaction Processing Systems. Morgan Kaufmann,
1993.

[23] J. Gray et al. Quickly generating billion-record synthetic
databases. In SIGMOD, 1994.

31

ISSN: 2321-7529(Online) | ISSN:2321-7510 (Print)

[24] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra:
A structured storage system on a P2P network. In SIGMOD,
2008.

[25] B. C. Ooi and S. Parthasarathy. Special issue on data
Management on cloud computing platforms. IEEE Data
Engineering Bulletin, vol. 32, 2009.

[26] A. Pavlo et al. A comparison of approaches to large-
scale data analysis. In SIGMOD, 2009.

[27] R. Rawson. HBase intro. In NoSQL Oakland, 2009.

[28] A. Schmidt et al. Xmark: A benchmark for XML data
Management. In VLDB, 2002.

[29] R. Sears, M. Callaghan, and E. Brewer. Rose:
Compressed, log-structured replication. In VLDB, 2008.

[30] M. Seltzer, D. Krinsky, K. A. Smith, and X. Zhang. The
case for application-specific benchmarking. In Proc. HotOS,
1999.

[31] P. Shivam et al. Cutting corners: Workbench automation
for server benchmarking. In Proc. USENIX Annual Technical
Conference, 2008.

[32] M. Stonebraker et al. C-store: a column-oriented DBMS.
In VLDB, 2005.

[33] B. White et al. An integrated experimental environment
for distributed systems and networks. In OSDI, 2002.

[34] K. Yocum et al. Scalability and accuracy in a large-scale
network emulator. In OSDI, 2002.

www.ijrt.org

International Journal of Research & Technology, Volume 2, Issue 2_April_2014

32

