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Abstract : Topological conjugacies preserve 

many topological dynamical properties. Thus, if 

we find a topological conjugacy of a map f with a 

simpler map g , we can analyse the simpler map g 

to obtain information about dynamical properties 

of the original map .In this paper We have 

established a topological conjugacy  of   logistic 

map Lµ(x)= µx(1-x) ,x ∈ [0,1] with  the quadratic  

map Q(x)=x
2
+c ,tent map T: [0,1]->[0,1] ,T(x) 

=2x, if 0<=x<=1/2     and                                                                                

T (x)=2(1-x) ,if ½<x<=1 ;and logistic type map 

Fµ(x)=(2- µ)x(1-x), x ∈ [0,1] 

 Keywords: Logistic map ,Topological 

conjugacy, Topological transitivity 

,Homeomorphisim. 

1.1.Introduction  

 By  �(
) = 

(1 − 
) Logistic Map is defined, 

where 
 is the parameter.For decades,several 

iterated functions have been extensively studied 

,and rich contents bhave een explored .Logistic 

map is one of the well –known maps and has 

became a standared map for studying iteration 

.This map contains all the interesting subjects in 

non-linear dynamics; .we list some references in 

[1-9].In general,the values of x and m of logistic 

map are restricted in the range ,0 <= 
 <=
1, 0 <= 
 <= 4   so that each x in the interval 

[0,1] is mapped onto the same interval [0,1].It is 

known that there is a stable fixed point x*=0 in 

the range 0<=µ<=1,and another stable fixed point 

x*=1-1/µ in the range 1<=µ<=3.After that ,we 

have period-doubling bifurcation at µ=3, 

3.4494897, 3.54409 .............. .These numerical 

results are well known and are easy to reproduce 

on computer. However, it is a puzzle why we have 

two neighbour regions,   

0<=x<=1 and 1<=µ<=3,  that each  has  a  stable   

fixed  point  of  f. According to  sharkovsky  

ordering [1],the appearance of the order of periods 

should be 1->2->4->8->..................,but instead we 

now have 1->1->2->4->8->..................... .This 

seems the Sharkovsky ordering is  slightly  

violated. However  it  dose  not. 

1.2 .Topological  conjugacy  :   

Definition: A  map �: � → �  is a 

homeomorphism if map �: � → �  is continuous 

and invertible and the invers ���: � → �   is 

continuous. 

Definition: Two topological dynamical systems 

�: � → � and �: � → � are topologically 

conjugated if they are conjugated and the 

conjugacy map ℎ: � → � is a homeomorphism. 

We will call h a topological conjugacy.i.e. h◦f=g 

◦h 

If in the above definition we only require the map 

ℎ: � → � to be continuous, then we say than g is a 

factor of f .If in addition ,h is an onto map ,than 

we say that g is a quasi –factor of f. 

Definition: Two topological dynamical systems 

�: � → � and �: � → � are topological semi –

conjugated if they are semi-conjugated and semi-

conjugacy  map ℎ: � → � is not only surjective 

but also continuous. We call h  a  topological 

semi-conjugacy .[3,6] 

Let us define the topological conjugacy condition 

h ◦f=g◦h  in the following figure . The idea is that 

both upper routes from the upper left X to the 

lower right Y-across the top, then down the right 

side , and down the left side ,then across the 

bottom give the same result . 
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We say that the diagram commutes essentially , h 

is mapping the function f to the function g. 

                 f 

          X         →                  X 

         ↑            g                   ↓  

          Y            →                Y 

  Which shows h◦.f=g◦.h 

For example the map ℎ: � → � defined by h(x)=x
2
 

,x≥o;andh(x)= -x
2
 ,x≤0 ; h is  a       

                     

 

Homeomorphisim. 

1.3 Transitivity : 

Some times given dynamical system �: � →
�,when we iterate x0 ∈X ,the orbit 

O(x0)={x0,f(x0),......}, spreads itself evenly over X, 

so that O(x0) is a dense set in X. 

Thus �: � → � is said to be topologically 

transitive if there exists x0∈ X such that O(x0) is a 

dense subset of X. A transitive point for f is a 

point x0  which has a dense orbite under f . If f is  

transitive , then there is a dense set of transitive 

points , since each point in O(x0) will be a 

transitive point .  

Proposition.1.2.1  If  f : X → X  and  g : Y → Y  

are  maps  conjugate via a  conjugacy  

  h : X → Y    ; h• f = g•  h, then 

1. h  •f
n
 = g

n
  •h for all n ∈ Z+, (so f

n
 and g

n
 are 

also conjugate). 

2. If c is a point of period m for f, then h(c) is a 

point of period m for g◦. c is attracting if and only 

if h(c) is attracting. 

3. f is transitive if and only if g is transitive. 

4. f has a dense set of periodic points if and only if 

g has a dense set of periodic points. 

5. f is chaotic if and only if g is chaotic.[11,12,14] 

Proof.  1.  h  •f
2
 = h  •f• f = g  •h • f = g  •g  •h = g

2
  

•h, and in the same way  

h• f
3
  = g

3
 •h, and continuing inductively the result 

follows. 

2. Suppose that f
i
(c) ≠  c for 0 < i <m and f

m
(c)=c, 

then h  •f 
i
(c)≠ h(c) for 

 0 < i <m  since h is one-to-one, and so g
i
  •h(c) 

≠h(c) for 0 <i<m. In addition, 

  h • f
m

(c)=g
m

  •h(c), or h(c)=g
m

(h(c)), so h(c) is a 

period m point for g. 

We shall only show that if p is an  attracting  fixed  

point of f (so that there is an open ball B(p) such 

that if x ∈ B(p) then f
n
(x) → p as n →∞), then 

h(p) is an attracting fixed point of g. Let V = 

h(B(p)), then since h is a homeomorphism, V is 

open in Y and contains h(p). Let y ∈ V , then 

h−1(y) ∈ B(p), so that fn(h
-1

(y)) → p as n →∞ . 

Since h is continuous, h(f
n
(h

-1
 (y))) → h(p) as n 

→∞, i.e., 

g
n
(y)=h  •f

n
  •h

-1
(y) → h(p), as n →∞, so h(p) is 

attracting.  

3. Suppose that O(z)={z,f(z),f
2
(z),...} is dense in 

X and let V ⊂ Y be a non- empty open set.   Then 

since h is a homeomorphism, h
-1

(V ) is open in X, 

so there exists k ∈ Z+ with 

0.5 1.0 1.5 2.0

1

2

3

4

�2.0 �1.5 �1.0 �0.5

�4

�3

�2

�1



ISSN: 2321–7529(Online) | ISSN:2321–7510 (Print)            International Journal of Research & Technology, Volume 2, Issue 2 

www.ijrt.org    18 

 

 f
k
(z) ∈ h

-1
(V ). It follows that h(f

k
(z)) = g

k
(h(z)) ∈ 

V , so that 

O(h(z)) = {h(z),g(h(z)),g
2
(h(z)),...} 

is dense in Y , i.e., g is transitive. Similarly, if g is 

transitive, then f is transitive. 

4. Suppose that f has a dense set of periodic points 

and let V ⊂ Y be non-empty and open. Then h
-1

(V 

) is open in X, so contains periodic points of f. As 

in (3), we see that V contains periodic points of g. 

Similarly if g has a dense set of periodic points, so 

does f. 

5. This now follows from (3) and (4). 

1.4  Conjugacy and Fundamental Domains : 

We have seen that two dynamical systems f and g 

with different dynamical proper- ties cannot be 

conjugate. On the other hand, sometimes we have 

dynamical systems having seemingly very similar 

dynamical properties and which we would like to 

show are conjugate. This is sometimes possible 

using the notion of fundamental domain, a set on 

which we construct a map h in an arbitrary 

manner and show that it extends to a conjugacy on 

the whole space. We first illustrate this idea with 

homeomorphisms f,g : R → R. We look at a fairly 

straight forward case where both 

homeomorphisms are order preserving and have 

no fixed points  (in fact lie strictly above the line  

y = x).[15] 

Proposition 1.4.1 Let f,g : R → R be 

homeomorphisms satisfying f(x) →x and g(x)→x 

for all x ∈ R. Then f and g are conjugate. 

Proof. The idea for the proof is a follows: Select 

x0 ∈ R arbitrarily and consider the 2-sided orbit 

Of(x0)={f
n
(x0) : n ∈ Z} = {...,x-1,x0,x1,x2,...}. 

Since f(x) >x for all x, this is an increasing 

sequence: ...x-1 <x 0 <x 1 <x 2 <..., so that the sets 

[x-1,x0),[x0,x1),[x1,x2),..., are disjoint and their 

union is all of R. We must have limn-> ∞ xn = ∞ 

since other wise the limit would exist and would 

have to be a fixed point. There are no fixed points 

since f(x) >x always. The set I =[ x0,f(x0)) = 

[x0,x1) is called a fundamental domain for f. Set J 

=[ x0,g(x0)) and define a map h : I → J arbitrarily 

as a continuous bijection (e.g., we can set h(x0)=x0 

and h(f(x0)) = g(x0) and then linearly from I to J). 

Now every other orbit of f intertwines with 

Of(x0): if y0 ∈ (x0,x1), then yn = fn(y0) ∈ fn(I), so 

lies between xi and xi+1. It follows that every orbit 

has a unique member in the interval [x0,x1) and 

we use this to extend the definition of h to all of 

R. If x ∈ fn(I) we define h(x) by mapping x back 

to I via f-n, then using h(f
-n

(x)) which is well 

defined, and then mapping back to g
n
(J) using g

n
. 

i.e., if x ∈ f
n
(I), n ∈ Z, define h(x)=g

n
 ◦ h ◦ f

-n
(x). 

 In this way, h is defined on all of R. We can 

check that h is one-to-one. It is onto because  h(f
-

n
(I)) = g

n
(J)) for each n, and we can check that it is 

continuous. Finally, because of the definition of h, 

ifx ∈ R, then x ∈ fn(I) for some n ∈ Z, so x = f
n
(y) 

for some y ∈ I. Then 

g • h(x)=g(g
n
 • h • f

-n
(x)) = g

n+1
 • h • f

-(n+1)
(f(x)) = 

h • f(x), 

so that f and g are conjugate. 

Our Discussion: 

1.  Lµ(x)= µx(1-x) ,and Qc(x)=x
2
+c  are  

linearly conjugate .                             

Proof: Let h(x)= ax+b ,be a linear function 

,then h(x) is surjective and continuous also 

h
 
is invertible and h is homeomorphism . 

We now try to solve     h • Lµ(x)= Qc•h(x)  

=> a µx(1-x)+b =( ax+b)
2
+c 

=>a µx- a µx
2
+b =

 
a

2 
x

2
+2bx+b

2
+c 
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Now  by  compairing  the  co –ifficents of  

various  powers  of  x  from  both  sides  

we  have   a= - µ         ,     a µ =2ab =>b = 

µ/2; 

Therefore h(x)= - µ x+ µ/2 and c=(2µ-

µ
2
)/4 

Again h(0)= µ/2  and h(1)= - µ/2    

Therefore  Lµ on the interval [0,1]  is  

linearly conjugate to Qc  on the interval 

 [-µ/2 , µ/2] . 

For µ=4 , L4(x)= 4x(1-x), on [0,1] is 

conjugate to Qc(x)=x
2
+c on the interval [-2 

,2] when c=-2 .In particular, Q-2 on [-2,2] 

is chaotic. 

2. The logistic map L4 :[0,1]→[0,1], 

L4(x)=4x(1-x) is conjugate to the tent   map 

 T: [0,1]→[0,1] ,T(x) =2x,if 0≤ ! ≤1/2  and  

T(x)=2(1-x) ,if ½≤ ! <1 ; 

Proof: Define h:[0,1]->[0,1] by h(x)=sin
2
 

(π x/2). 

Here h(0)=0 ,h(1)=1 and h is continuous 

implies h  surjective ,i.e.h([0,1]) =[1,0].                            

Again h(x)= (π/2) sin(π x) >0 if 0<x<1. 

Thus h is monotonic , i.e. h ,is injective . 

Thus h is invertiable .h
-1

(x) = "
π
 arcsin(√
) 

and h is homeomorphism. 

Also L4h• (x)=L4(sin
2(

(π x/2)) 

=4sin
2
(πx/2)(1-(sin

2
(πx/2))=sin

2 
(πx ) . 

And h T• (x)=h(Tx)=h(2x) if 

0<=x<=1/2;and h(Tx)= h(2-2x),if ½<x<=1 

From both h T• (x)= sin
2 

(πx )   

Therefore L4•h =h•T implies that L4 and T 

are conjugate .  

 

                 Fig1: Tent map T  

 

Fig 2:Logistic map L4 

Figure shows tent mapT and logistic map 

L4 are topologically conjugated. 
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3. The logistic map  Lµ(x)= µx(1-x) ,x∈ [0,1] is 

conjugate to the logistic type map 

 Fµ=(2-µ)x(1-x) ,( µ≠0),[11]. 

Proof: Define  h(x)=ax+b ,be a linear 

function ,then h(x) is surjective and 

continuous also h
 
is invertible and h is 

homeomorphism. 

Now h •Lµ (x )= Fµ  •h(x) 

=>a{ µx(1-x) }+ b =(2-µ)(ax+b)- (2-

µ)(ax+b)
2 

=> a µx - a µx
2
+b= (2-µ)ax -(2-µ)b -(2-

µ)a
2
x

2
-2(2-µ)axb -(2-µ)b

2
  

By compairing the various power of  

co –ifficient of x from both sides 

a=µ/2-µ;  b=(1-µ)/2-µ 

Therefore h(x)=( µ/2-µ)x +(1-µ)/2-µ. 

Again h(0)= (1-µ)/2-µ and h(1)=1/2- µ  

Therefore  Lµ on the interval [0,1]  is  

linearly conjugate to Fµ on the  

interval 

.[ (1-µ)/2-µ, 1/2- µ].    

Fig.L4  

 

                              Fig3 .F4                                                                                                                                                                             

Figure shows logistic map L4 and F4 

map are topologically conjugated . 

 

4.TRANSITIVITY OF LOGISTIC 

MAP 

  For the logistic map L4(x)=4x(1-x) let 

us find the period n points ,such that to 

solve the equation L
n

4(x)=x .When 

x=sin
2
θ, this becomes   

 Sin
2
(θ) = sin 

2
(2

n
  θ). 

This gives rise to the two equations 

±θ =2
n
  θ +2kπ, or   ± θ = (2 k + 1)π – 

2
n
 θ,  for some k ∈ Z.  

This can be summarized as a single 

equation: 

0.2 0.4 0.6 0.8 1.0
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±θ =2
n
  θ + kπ ⇒ θ = kπ /(2

n
 ± 1)  ,n=1 

,2,3..., k∈ Z 

so that, Per
n
(L4)={sin2(kπ/( 2

n
 – 1) : 0≤ k<2

n
-

1}∪{sin
2
[kπ/ (2

n
 +1 )] : 0<k≤ 2

n
-1}.   It follows 

that L4 has points of all possible periods. And also 

the set of all periodic points constitutes a “dense” 

set in [0,1] but each of these points is unstable 

.Thus we have the logistic map is transitive for 

µ=4. 

5.FUNDAMENTAL DOMAINS OF LOGISTIC 

MAP 

 Consider the logistic maps Lµ(x)=µx(1 − x) for 

various values of µ ∈ (0,4] and x ∈ [0,1]. We first 

show that for 0 <µ<λ≤ 1, Lµ and Lλ  are 

conjugate. There is a slight  complication here as 

these maps are not increasing, but they do have an 

attracting fixed point at 0, and we have that the 

basin of  attraction is all of [0,1].[15].   We first 

deal with the interval on which the maps are 

increasing, [0,1/2], and look at the restriction of 

the functions to this interval. Our aim is to 

construct a homeomorphism h : [0 ,1] → [0,1] 

with the property Lλ • h = h • Lµ. Take  Lµ(0,1/2] 

= (µ/4,1/2] as a fundamental domain for Lµ and 

Lλ(0,1/2] = (λ/4,1/2] as a fundamental domain for 

Lλ. Define h : (µ/4,1/2] → (λ/4,1/2] by h(1/2) = 

1/2 and h(µ/4) = λ/4 and then linearly on the 

remainder of the interval. Set I =(µ/4,1/2] and J 

=(λ/4,1/2], then since 0 is an attracting fixed point, 

the intervals L
n
 µ(I) and L

n
 λ(J) are disjoint for n 

∈ Z+, and their union is all of (0,1/2]. Extend the 

definition of h so that it is defined on (0,1/2] by; 

h(x)=L
n
 λ  ◦ h ◦ L

-n
 µ (x), for x ∈ L

n
 µ(I). 

We can  now  check  that h is continuous  and  

increasing on  [0,1/2] when  we  set  h(0) = 0. 

Now define h on (1/2,1] by setting h(1 − x)=1− 

h(x) for x ∈ [0,1/2), clearly  giving  a  

homeomorphism on [0,1]. Then 

Lλ(h(1 − x)) = Lλ(1 − h(x)) = Lλ(h(x)) = h(Lµ(x)) 

= h(Lµ(1 − x)), 

so that h is the required conjugation. 

CONCLUSION 

In this paper we have established linear 

topological conjugacy  in between  logistic map 

with tent map ,logistic type map [11]and a 

quadratic map along with their region of 

convergency. Also the transitivity of logistic map 

for µ=4 and we have discussed the fundamental 

domain of logistic map.  From the above 

discussion we can conclude that the quadratic 

maps are linearly equivalent conjugacy with 

logistic map. 
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