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Abstract— controlling a system and state constraints is one of 

the most important problems in control theory, but also one of 

the most challenging. Another important but just as demanding 

topic is robustness against uncertainties in a controlled system. 

One of the most successful approaches, both in theory and 

practice, to control constrained systems is model predictive 

control (MPC). The basic idea in MPC is to repeatedly solve 

optimization problems on-line to find an optimal input to the 

controlled system. In recent years, much effort has been spent to 

incorporate the robustness problem into this framework. 
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I. INTRODUCTION 

The models used in MPC are generally intended to represent 

the behaviour of complex dynamical systems. The additional 

complexity of the MPC control algorithm is not generally 

needed to provide adequate control of simple systems, which 

are often controlled well by generic PID controllers. Common 

dynamic characteristics that are difficult for PID controllers 

include large time delays and high-order dynamics. 

MPC models predict the change in the dependent variables of 

the modelled system that will be caused by changes in 

the independent variables. In a chemical process, independent 

variables that can be adjusted by the controller are often either 

the set points of regulatory PID controllers (pressure, flow, 

temperature, etc.) or the final control element (valves, 

dampers, etc.). Independent variables that cannot be adjusted 

by the controller are used as disturbances. Dependent 

variables in these processes are other measurements that 

represent either control objectives or process constraints. 

MPC uses the current plant measurements, the current 

dynamic state of the process, the MPC models, and the 

process variable targets and limits to calculate future changes 

in the dependent variables. These changes are calculated to 

hold the dependent variables close to target while honouring 

constraints on both independent and dependent variables. The 

MPC typically sends out only the first change in each 

independent variable to be implemented, and repeats the 

calculation when the next change is required. 

While many real processes are not linear, they can often be 

considered to be approximately linear over a small operating 

range. Linear MPC approaches are used in the majority of 

applications with the feedback mechanism of the MPC 

compensating for prediction errors due to structural mismatch 

between the model and the process. In model predictive 

controllers that consist only of linear models, 

the superposition principle of linear algebra enables the effect 

of changes in multiple independent variables to be added 

together to predict the response of the dependent variables. 

This simplifies the control problem to a series of direct matrix 

algebra calculations that are fast and robust. 

When linear models are not sufficiently accurate to represent 

the real process nonlinearities, several approaches can be used. 

In some cases, the process variables can be transformed before 

and/or after the linear MPC model to reduce the nonlinearity. 

The process can be controlled with nonlinear MPC that uses a 

nonlinear model directly in the control application. The 

nonlinear model may be in the form of an empirical data fit 

(e.g. artificial neural networks) or a high-fidelity dynamic 

model based on fundamental mass and energy balances. The 

nonlinear model may be linearized to derive a Kalman filter or 

specify a model for linear MPC. 

 

II. MODEL PREDICTIVE CONTROL 

 

Model Predictive Control is the only advanced control 

technique, which has been very successful in particular 

applications. Model predictive control (MPC) refers to a class 

of computer control algorithms that control the future 

behaviour of a plant through the use of an explicit process 

model. At each control interval the MPC algorithm computes 

an open-loop sequence of manipulated variable adjustments in 

order to optimize future plant behaviour. The Model 

Predictive Control problem is formulated as solving on-line a 

finite horizon open loop optimal control problem subject to 

system dynamics and constraints involving states and controls. 

Fig 1 shows the basic principle of model predictive control. 

Based on measurements obtained at time t, the controller 

predicts the future dynamic behaviour of the system over a 

prediction horizon T and determines (over a control horizon) 

the input such that a predetermined open-loop performance 

object function is optimized. 
 Model predictive control (MPC) is a very attractive concept 

for the development and tuning of nonlinear controllers in the 

presence of input, output or state constraint. The first input in 

the optimal sequence is injected into the plant, and the entire 

optimization is repeated at subsequent control intervals. MPC 

technology was originally developed for power plant and 

petroleum refinery applications, but can now be found in a 

wide variety of manufacturing environments including 

chemicals, food processing, automotive, aerospace, 

metallurgy and pulp and paper. The application of MPC 

controllers based on linear dynamic models cover a wide 
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range of applications, and linear MPC theory can be 

considered quite mature. Nevertheless, many manufacturing 

processes are inherently nonlinear and there are cases where 

nonlinear effects are significant and can-not be ignored. These 

include at least two broad categories of applications:  

1. Regulator control problems where the process is highly 

nonlinear and subject to large frequent disturbances (pH  

control, etc.).  

2. Servo control problems where the operating points change 

frequently and span a wide range of nonlinear process  

dynamics (polymer manufacturing, ammonia synthesis, etc.).  

Model based predictive control, MBPC, strategy has received 

particular attention in the areas of process control, is  

based on the use of a model for predicting the future 

behaviours of the system over a finite future horizon. The  

control signal to be applied to the plant at the current sampling 

time is obtained by solving a finite dimension optimization 

problem over the prediction horizon. “MPC is the family of 

controllers in which there is a direct use of an explicit and 

separately identifiable model” The advantages of MPC 

compared with many other control techniques can be listed as 

follows: 

 
It can use step and impulse response data which can easily be 

obtained,  

• It can handle input/output constraints directly,  

• It gives satisfactory performance even with time 

delays and high nonlinearities,  

• It can be used in multivariable format,  

• It is robust in most cases,  

• Implementation of the technique is simple,  

• It can optimize over a trajectory,  

• It can be used to control various processes, whether 

simple or complex ones.                            

 
                                  Fig 1: Block Diagram of the MPC controller. 
 
The sum of squared difference between the predicted outputs 

and their set points over the future prediction horizon and the 

sum of squares of the control moves over the control horizon. 

The control of a process, quantitative formulation of the 

control objective is to minimize the cost  

 
Subject to the constraints 

NU ≤ N1,2  │∆u(t)│ ≤ ∆umax  

umin ≤ u(t) ≤ umax  

ypmin ≤ yp ≤ ypmax 

 

where r is the reference, yp is the predicted output, u is the 

control variable, λy and λU are the output and the input  

weighting parameter: N1, N2 represents minimum and 

maximum prediction horizon and NU is the controller moves  

horizon. Here U is the NU future inputs vector defined as,  

 

 

III. RESULTS AND DISCUSSION 

 
 A comparative analysis of the performance of the chemical 

plant by both MPC and PID controller is obtained by 

undergoing simulations in Matlab. This system gave the better 

performance over PID system in both the linear and   

nonlinear form. 

 

MPC controllers is probably the best assumption that can be 

used for stable plants in the total absence of disturbance and 

measurement information, but better feedback is possible if 

the distribution of disturbances can be characterized more 

carefully.  

The setup and performance of the PID system shown below in 

fig. 2 to 6: 

 

 
Fig 2: Simulation diagram of PID Controller for chemical plant. 
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Fig 3: Concentration Setpoint input of PID Controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4: Concentration output of PID Controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       

 

Fig 5: Level Setpoint input of PID Controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                    Fig 6: Level output of PID Controller. 

 

    The Setup and performance of the MPC system shown 

below in fig 7 to 11: 

 

 
 

Fig 7: Simulation diagram of MPC Controller for chemical plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
                 

Fig 8: Level Setpoint input of MPC Controller. 
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                      Fig 9: Level output of MPC Controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 10: Concentration Setpoint input of MPC Controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 11: Concentration output of MPC Controller. 
 

IV. CONCLUSION 

We have used the MPC controller and output compared 

with PID for chemical plant. This system gave the better 

performance over PID system in both the linear and nonlinear 

form. This simulation results prove our concept and this allow 

us to use MPC for more complex systems. 
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